论文标题
计算量量子电路中的量子状态复杂性
Quantum State Complexity in Computationally Tractable Quantum Circuits
论文作者
论文摘要
表征局部随机量子电路的量子复杂性是一个非常深的问题,对量子信息理论,量子多体物理学和高能量物理的看似不同的领域有影响。尽管近年来我们对这些系统的理论理解已经发展,但研究这些模型的数值方法仍然受到严重限制。在本文中,我们讨论了一类特殊的数值量子电路,称为量子自动机电路,这可能特别适合此任务。这些是保留计算基础的电路,但可以产生高度纠缠的输出波函数。使用量子复杂性理论的思想,尤其是与统一设计的思想,我们认为自动机波函数具有高量子状态的复杂性。我们查看多种指标,包括测量量子状态的总体纠缠特性的输出位弦分布和表征,并发现自动机波函数近似于完全HAAR随机状态的行为。除此之外,我们还确定了广义的超时有序的2K点相关功能是自动机电路中复杂性的特别有用的探针。使用这些相关器,我们能够在数值上研究大型系统的争夺时间之外的复杂性的增长。结果,我们能够提供局部量子电路中设计复杂性线性生长的证据,这与量子信息理论的猜想一致。
Characterizing the quantum complexity of local random quantum circuits is a very deep problem with implications to the seemingly disparate fields of quantum information theory, quantum many-body physics and high energy physics. While our theoretical understanding of these systems has progressed in recent years, numerical approaches for studying these models remains severely limited. In this paper, we discuss a special class of numerically tractable quantum circuits, known as quantum automaton circuits, which may be particularly well suited for this task. These are circuits which preserve the computational basis, yet can produce highly entangled output wave functions. Using ideas from quantum complexity theory, especially those concerning unitary designs, we argue that automaton wave functions have high quantum state complexity. We look at a wide variety of metrics, including measurements of the output bit-string distribution and characterization of the generalized entanglement properties of the quantum state, and find that automaton wave functions closely approximate the behavior of fully Haar random states. In addition to this, we identify the generalized out-of-time ordered 2k-point correlation functions as a particularly useful probe of complexity in automaton circuits. Using these correlators, we are able to numerically study the growth of complexity well beyond the scrambling time for very large systems. As a result, we are able to present evidence of a linear growth of design complexity in local quantum circuits, consistent with conjectures from quantum information theory.