论文标题

$ \ MATHCAL S(\ MATHFRAK G)$相关的兼容泊松托架和2 splittings和Poisson的交换子代理

Compatible Poisson brackets associated with 2-splittings and Poisson commutative subalgebras of $\mathcal S(\mathfrak g)$

论文作者

Panyushev, Dmitri, Yakimova, Oksana

论文摘要

令$ {\ mathcal s}(\ mathfrak g)$为还配备了标准泊松结构的还原谎言代数$ \ mathfrak g $的对称代数。 If ${\mathcal C}\subset\mathcal S(\mathfrak g)$ is a Poisson-commutative subalgebra, then ${\rm trdeg\,}{\mathcal C}\le\boldsymbol{b}(\mathfrak g)$, where $\boldsymbol{b}(\mathfrak g)=(\ dim \ mathfrak g+{\ rm rk} \ mathfrak g)/2 $。我们提出了一种构建托有泊托托管的亚代价的方法分为两个球形亚代桥的总和。有一些自然的例子,其中代数$ \ mathcal z _ {\ langle \ mathfrak h,\ mathfrak r \ rangle} $似乎是多项式的。最有趣的情况与对$(\ Mathfrak B,\ Mathfrak U _-)$有关,其中$ \ Mathfrak B $是$ \ Mathfrak G $的Borel subalgebra。在这里,我们证明$ {\ Mathcal Z} _ {\ langle \ Mathbb b,\ Mathbb u _- \ rangle} $是最大的泊松交通,并且在每个常规的coadjoint Orbit上都完整,$ \ Mathfrak g^*$。其他一系列示例与$ \ Mathfrak G $相关的分解有关。

Let ${\mathcal S}(\mathfrak g)$ be the symmetric algebra of a reductive Lie algebra $\mathfrak g$ equipped with the standard Poisson structure. If ${\mathcal C}\subset\mathcal S(\mathfrak g)$ is a Poisson-commutative subalgebra, then ${\rm trdeg\,}{\mathcal C}\le\boldsymbol{b}(\mathfrak g)$, where $\boldsymbol{b}(\mathfrak g)=(\dim\mathfrak g+{\rm rk}\mathfrak g)/2$. We present a method for constructing the Poisson-commutative subalgebra $\mathcal Z_{\langle\mathfrak h,\mathfrak r\rangle}$ of transcendence degree $\boldsymbol{b}(\mathfrak g)$ via a vector space decomposition $\mathfrak g=\mathfrak h\oplus\mathfrak r$ into a sum of two spherical subalgebras. There are some natural examples, where the algebra $\mathcal Z_{\langle\mathfrak h,\mathfrak r\rangle}$ appears to be polynomial. The most interesting case is related to the pair $(\mathfrak b,\mathfrak u_-)$, where $\mathfrak b$ is a Borel subalgebra of $\mathfrak g$. Here we prove that ${\mathcal Z}_{\langle\mathbb b,\mathbb u_-\rangle}$ is maximal Poisson-commutative and is complete on every regular coadjoint orbit in $\mathfrak g^*$. Other series of examples are related to decompositions associated with involutions of $\mathfrak g$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源