论文标题

钢琴:金字塔输入增强卷积神经网络,用于3D肺CT扫描中的GGO检测

PiaNet: A pyramid input augmented convolutional neural network for GGO detection in 3D lung CT scans

论文作者

Liu, Weihua, Liua, Xiabi, Luo, Xiongbiao, Wang, Murong, Han, Guanghui, Zhao, Xinming, Zhu, Zheng

论文摘要

本文提出了一个新的卷积神经网络,其中具有多尺度处理,用于检测3D计算机断层扫描(CT)图像中的地面玻璃不透明度(GGO)结节,该图像称为钢板。钢琴由特征萃取模块和一个预测模块组成。以前的模块是通过将金字塔多尺度源连接引入收缩结构来构建的。后一个模块包含一个边界盒回归仪和一个分类器,这些回归仪可同时识别GGO结节并在多个尺度上估算边界框。为了训练拟议的钢琴,制定了两阶段的转移学习策略。在第一阶段,将特征萃取模块嵌入到一个分类器网络中,该模块在大量的GGO和非GGGO补丁的数据集上进行了训练,这些数据集是通过从少量注释的CT扫描中执行数据增强而生成的。在第二阶段,验证的特征 - 萃取模块被加载到钢琴中,然后使用带注释的CT扫描对钢板进行微调。我们在LIDC-IDRI数据集上评估了所提出的钢板。实验结果表明,我们的方法的表现优于最先进的对应物,包括subsolid CAD和AIDENS Systems以及S4ND和GA-SSD方法。钢板的灵敏度为91.75%,每次扫描仅一个假阳性

This paper proposes a new convolutional neural network with multiscale processing for detecting ground-glass opacity (GGO) nodules in 3D computed tomography (CT) images, which is referred to as PiaNet for short. PiaNet consists of a feature-extraction module and a prediction module. The former module is constructed by introducing pyramid multiscale source connections into a contracting-expanding structure. The latter module includes a bounding-box regressor and a classifier that are employed to simultaneously recognize GGO nodules and estimate bounding boxes at multiple scales. To train the proposed PiaNet, a two-stage transfer learning strategy is developed. In the first stage, the feature-extraction module is embedded into a classifier network that is trained on a large data set of GGO and non-GGO patches, which are generated by performing data augmentation from a small number of annotated CT scans. In the second stage, the pretrained feature-extraction module is loaded into PiaNet, and then PiaNet is fine-tuned using the annotated CT scans. We evaluate the proposed PiaNet on the LIDC-IDRI data set. The experimental results demonstrate that our method outperforms state-of-the-art counterparts, including the Subsolid CAD and Aidence systems and S4ND and GA-SSD methods. PiaNet achieves a sensitivity of 91.75% with only one false positive per scan

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源