论文标题
下一代无线网络中动态恢复的智能排名
Intelligent Ranking for Dynamic Restoration in Next Generation Wireless Networks
论文作者
论文摘要
新兴的5G和下一代6G无线的无线可能涉及无数连通性,包括大量相对较小的细胞提供超密度的覆盖范围。在如此密集的无线系统中保证无缝连接和服务水平协议需要有效的网络管理和快速的服务恢复。但是,在最大化服务恢复方面,恢复无线网络通常需要评估每个网络元素的服务影响。不幸的是,在中断期间,实时KPI信息的不可用,可以强大地依靠基于上下文的手动评估。结果,几乎不可能配置网络节点的实时恢复,从而导致停机时间延长。在本文中,我们探索了深度学习,以期待出色的网络中断,从而引入智能,主动的网络恢复管理方案。我们提出的方法引入了一种基于不同无线节点的新型基于利用的排名方案,以最大程度地减少服务停机时间并实现快速恢复。基于实际无线数据的网络KPI(关键性能索引)的有效预测可在服务中断提高约54%。
Emerging 5G and next generation 6G wireless are likely to involve myriads of connectivity, consisting of a huge number of relatively smaller cells providing ultra-dense coverage. Guaranteeing seamless connectivity and service level agreements in such a dense wireless system demands efficient network management and fast service recovery. However, restoration of a wireless network, in terms of maximizing service recovery, typically requires evaluating the service impact of every network element. Unfortunately, unavailability of real-time KPI information, during an outage, enforces most of the existing approaches to rely significantly on context-based manual evaluation. As a consequence, configuring a real-time recovery of the network nodes is almost impossible, thereby resulting in a prolonged outage duration. In this article, we explore deep learning to introduce an intelligent, proactive network recovery management scheme in anticipation of an eminent network outage. Our proposed method introduces a novel utilization-based ranking scheme of different wireless nodes to minimize the service downtime and enable a fast recovery. Efficient prediction of network KPI (Key Performance Index), based on actual wireless data demonstrates up to ~54% improvement in service outage.