论文标题

相对熵的变异方法(应用于QFT)

Variational approach to relative entropies (with application to QFT)

论文作者

Hollands, Stefan

论文摘要

我们使用差异表达式定义了von Neumann代数的新差异,该差异表达在本质上与Kosaki的相对熵公式相似。我们的差异满足了通常的期望特性,上限夹杂的肾熵,并在极限内降低至忠诚度。作为例证,我们使用量子场理论中的公式来计算两部分系统中的真空与“有条件期望”的“ Orbifold” - 根据琼斯索引的系统。我们借此机会指出了与相对熵有关的因素的任意von neumann子代数的熵确定性关系。这种确定性关系在校正码方面具有等效的公式。

We define a new divergence of von Neumann algebras using a variational expression that is similar in nature to Kosaki's formula for the relative entropy. Our divergence satisfies the usual desirable properties, upper bounds the sandwiched Renyi entropy and reduces to the fidelity in a limit. As an illustration, we use the formula in quantum field theory to compute our divergence between the vacuum in a bipartite system and an "orbifolded" -- in the sense of conditional expectation -- system in terms of the Jones index. We take the opportunity to point out entropic certainty relation for arbitrary von Neumann subalgebras of a factor related to the relative entropy. This certainty relation has an equivalent formulation in terms of error correcting codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源