论文标题
与Dzyaloshinskii-Moriya互动中的平坦乐队梯子中的当前跳跃
Current jumps in flat band ladders with Dzyaloshinskii-Moriya interactions
论文作者
论文摘要
由于光谱中的平坦带,局部木蛋白状态是一种经过深入研究的现象,可以在许多不同空间维度的沮丧磁铁中找到。 Dzyaloshinskii-Moriya(DM)相互作用的存在可能会在这种系统中根本改变行为。在这种情况下,我们研究了一维沮丧的抗fiferromagnet的范式示例,即在存在DM相互作用的情况下的锯齿链。使用路径积分方法和数值密度矩阵重新归一化组,我们重新审视局部镁的物理,并确定DM相互作用在基态下的后果。我们研究了旋转电流行为,发现了三种不同的制度。首先,在低磁场处,自旋电流显示为参数$ d $的函数的Luttinger-liquid状态。增加磁场,系统处于$ M = 1/2 $平原的Meissner阶段,其中自旋电流与DM参数成正比。最后,进一步增加了磁场,对于有限的$ d $,旋转电流在固定磁化时表明,在$ d = 0 $时,旋转电流跳到大值,这也是由于平坦带引起的现象。
Localized magnons states, due to flat bands in the spectrum, is an intensely studied phenomenon and can be found in many frustrated magnets of different spatial dimensionality. The presence of Dzyaloshinskii-Moriya (DM) interactions may change radically the behavior in such systems. In this context, we study a paradigmatic example of a one-dimensional frustrated antiferromagnet, the sawtooth chain in the presence of DM interactions. Using both path integrals methods and numerical Density Matrix Renormalization Group, we revisit the physics of localized magnons and determine the consequences of the DM interaction on the ground state. We have studied the spin current behavior, finding three different regimes. First, a Luttinger-liquid regime where the spin current shows a step behavior as a function of parameter $D$, at a low magnetic field. Increasing the magnetic field, the system is in the Meissner phase at the $m = 1/2$ plateau, where the spin current is proportional to the DM parameter. Finally, further increasing the magnetic field and for finite $D$ there is a small stiffness regime where the spin current shows, at fixed magnetization, a jump to large values at $D = 0$, a phenomenon also due to the flat band.