论文标题

疫苗不良事件检测的多实体域适应

Multi-instance Domain Adaptation for Vaccine Adverse Event Detection

论文作者

Wang, Junxiang, Zhao, Liang

论文摘要

疫苗不良事件的检测对于发现和改善问题疫苗至关重要。为了实现这一目标,传统上正式的报告系统(如Vaers)支持准确但延迟的监视,而最近进行了社交媒体进行及时但嘈杂的观察。利用这两个领域的互补优势来提高检测性能看起来不错,但由于其数据特征之间的显着差异,现有方法无法有效地实现,包括:1)正式语言V.S.非正式语言,2)每用户v.s。每个用户的多消息和3)一类V.S.二进制班级。在本文中,我们提出了一个名为Multi-Insance域Adaptation(MIDA)的新颖通用框架,以最大程度地提高社交媒体用户的疫苗不良事件检测任务中这两个域之间的协同作用。具体而言,我们提出了一个广义的最大平均差异(MMD)标准,以测量来自这两个域的共享潜在语义空间中的异质消息之间的语义距离。然后,这些消息级广义MMD距离是由新提出的混合实例内核与用户级距离合成的。我们最终最大程度地减少了这两个域的部分匹配类的样品之间的距离。为了解决非凸优化问题,开发了基于乘数的有效交替方向方法(ADMM)算法与凸 - 孔隙过程(CCP)相结合,以准确优化参数。广泛的实验表明,在六个指标下,我们的模型的表现优于基线。案例研究表明,MIDA的正式报告并提取了不利的推文,具有关键字和描述模式的相似性。

Detection of vaccine adverse events is crucial to the discovery and improvement of problematic vaccines. To achieve it, traditionally formal reporting systems like VAERS support accurate but delayed surveillance, while recently social media have been mined for timely but noisy observations. Utilizing the complementary strengths of these two domains to boost the detection performance looks good but cannot be effectively achieved by existing methods due to significant differences between their data characteristics, including: 1) formal language v.s. informal language, 2) single-message per user v.s. multi-messages per user, and 3) one class v.s. binary class. In this paper, we propose a novel generic framework named Multi-instance Domain Adaptation (MIDA) to maximize the synergy between these two domains in the vaccine adverse event detection task for social media users. Specifically, we propose a generalized Maximum Mean Discrepancy (MMD) criterion to measure the semantic distances between the heterogeneous messages from these two domains in their shared latent semantic space. Then these message-level generalized MMD distances are synthesized by newly proposed mixed instance kernels to user-level distances. We finally minimize the distances between the samples of the partially-matched classes from these two domains. In order to solve the non-convex optimization problem, an efficient Alternating Direction Method of Multipliers (ADMM) based algorithm combined with the Convex-Concave Procedure (CCP) is developed to optimize parameters accurately. Extensive experiments demonstrated that our model outperformed the baselines by a large margin under six metrics. Case studies showed that formal reports and extracted adverse-relevant tweets by MIDA shared a similarity of keyword and description patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源