论文标题

二维MO(1-X)WXS2合金的原子和电子结构

Atomic and electronic structure of two-dimensional Mo(1-x)WxS2 alloys

论文作者

Xia, Xue, Loh, Siow Mean, Viner, Jacob, Teutsch, Natalie C., Graham, Abigail J., Kandyba, Viktor, Barinov, Alexei, Sanchez, Ana M., Smith, David C., Hine, Nicholas D. M., Wilson, Neil R.

论文摘要

合金使光电应用的半导体电子结构的工程能够工程。由于其类似的晶格参数,割草组的二维半导体金属二分法(其中m = mo或w and x = s = s或se)可以作为具有低缺陷浓度的高质量材料生长。在这里,我们使用高分辨率实验技术和仿真的组合研究了MO(1-X)WXS2合金的原子和电子结构。通过化学蒸气运输生长的这些合金中Mo和W原子位置的分析表明它们是随机分布的,与使用由第一原理计算确定的相互作用能量的蒙特卡洛模拟一致。电子结构参数由角度分辨光发射光谱测量直接确定。这些表明,在Valence带边缘处的自旋轨道分裂与从MOS2到WS2的W含量呈线性增加,这与线性缩放密度函数理论(LS-DFT)预测一致。预计在中间组合物处,在导带边缘处的自旋轨道拆分将降低至零。尽管如此,单层MO0.5W0.5S2上的极化分辨的光致发光光谱显示出明显的圆形二色性,表明保留了旋转 - 瓦利锁定。这些结果表明,合金是控制Spintronic和Valleytronic应用MX2的电子结构的重要工具。

Alloying enables engineering of the electronic structure of semiconductors for optoelectronic applications. Due to their similar lattice parameters, the two-dimensional semiconducting transition metal dichalcogenides of the MoWSeS group (MX2 where M= Mo or W and X=S or Se) can be grown as high-quality materials with low defect concentrations. Here we investigate the atomic and electronic structure of Mo(1-x)WxS2 alloys using a combination of high-resolution experimental techniques and simulations. Analysis of the Mo and W atomic positions in these alloys, grown by chemical vapour transport, shows that they are randomly distributed, consistent with Monte Carlo simulations that use interaction energies determined from first-principles calculations. Electronic structure parameters are directly determined from angle resolved photoemission spectroscopy measurements. These show that the spin-orbit splitting at the valence band edge increases linearly with W content from MoS2 to WS2, in agreement with linear-scaling density functional theory (LS-DFT) predictions. The spin-orbit splitting at the conduction band edge is predicted to reduce to zero at intermediate compositions. Despite this, polarisation-resolved photoluminescence spectra on monolayer Mo0.5W0.5S2 show significant circular dichroism, indicating that spin-valley locking is retained. These results demonstrate that alloying is an important tool for controlling the electronic structure of MX2 for spintronic and valleytronic applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源