论文标题
二维MO(1-X)WXS2合金的原子和电子结构
Atomic and electronic structure of two-dimensional Mo(1-x)WxS2 alloys
论文作者
论文摘要
合金使光电应用的半导体电子结构的工程能够工程。由于其类似的晶格参数,割草组的二维半导体金属二分法(其中m = mo或w and x = s = s或se)可以作为具有低缺陷浓度的高质量材料生长。在这里,我们使用高分辨率实验技术和仿真的组合研究了MO(1-X)WXS2合金的原子和电子结构。通过化学蒸气运输生长的这些合金中Mo和W原子位置的分析表明它们是随机分布的,与使用由第一原理计算确定的相互作用能量的蒙特卡洛模拟一致。电子结构参数由角度分辨光发射光谱测量直接确定。这些表明,在Valence带边缘处的自旋轨道分裂与从MOS2到WS2的W含量呈线性增加,这与线性缩放密度函数理论(LS-DFT)预测一致。预计在中间组合物处,在导带边缘处的自旋轨道拆分将降低至零。尽管如此,单层MO0.5W0.5S2上的极化分辨的光致发光光谱显示出明显的圆形二色性,表明保留了旋转 - 瓦利锁定。这些结果表明,合金是控制Spintronic和Valleytronic应用MX2的电子结构的重要工具。
Alloying enables engineering of the electronic structure of semiconductors for optoelectronic applications. Due to their similar lattice parameters, the two-dimensional semiconducting transition metal dichalcogenides of the MoWSeS group (MX2 where M= Mo or W and X=S or Se) can be grown as high-quality materials with low defect concentrations. Here we investigate the atomic and electronic structure of Mo(1-x)WxS2 alloys using a combination of high-resolution experimental techniques and simulations. Analysis of the Mo and W atomic positions in these alloys, grown by chemical vapour transport, shows that they are randomly distributed, consistent with Monte Carlo simulations that use interaction energies determined from first-principles calculations. Electronic structure parameters are directly determined from angle resolved photoemission spectroscopy measurements. These show that the spin-orbit splitting at the valence band edge increases linearly with W content from MoS2 to WS2, in agreement with linear-scaling density functional theory (LS-DFT) predictions. The spin-orbit splitting at the conduction band edge is predicted to reduce to zero at intermediate compositions. Despite this, polarisation-resolved photoluminescence spectra on monolayer Mo0.5W0.5S2 show significant circular dichroism, indicating that spin-valley locking is retained. These results demonstrate that alloying is an important tool for controlling the electronic structure of MX2 for spintronic and valleytronic applications.