论文标题
属性引导和纯粹的视觉关注对齐,以识别几次
Attributes-Guided and Pure-Visual Attention Alignment for Few-Shot Recognition
论文作者
论文摘要
几乎没有识别的目的是识别每个班级中标记示例数量有限的新型类别。为了鼓励从补充观点学习,最近的方法将辅助语义模式引入了有效的度量学习框架中,旨在学习训练样本(支持集)和测试样本(查询集)之间的特征相似性。但是,这些方法仅增强具有可用语义的样本的表示,同时忽略查询集,这将失去了改进的可能性,并可能导致模态组合与纯粹的vis式表示之间的变化。在本文中,我们设计了一个属性引导的注意模块(AGAM)来利用人类注销的属性并学习更多的判别特征。该插件模块可以使视觉内容和相应的属性集体关注支持集的重要渠道和区域。而且,对于仅带有视觉信息的查询设置,还可以在属性不可用的情况下实现功能选择。因此,两组的表示形式以细粒度的方式得到改善。此外,提出了一种注意对准机制,以将知识从属性的指导中提取到无属性的样本的纯粹视觉分支。广泛的实验和分析表明,我们提出的模块可以显着改善基于公制的方法,以在不同的数据集和设置上实现最新性能。
The purpose of few-shot recognition is to recognize novel categories with a limited number of labeled examples in each class. To encourage learning from a supplementary view, recent approaches have introduced auxiliary semantic modalities into effective metric-learning frameworks that aim to learn a feature similarity between training samples (support set) and test samples (query set). However, these approaches only augment the representations of samples with available semantics while ignoring the query set, which loses the potential for the improvement and may lead to a shift between the modalities combination and the pure-visual representation. In this paper, we devise an attributes-guided attention module (AGAM) to utilize human-annotated attributes and learn more discriminative features. This plug-and-play module enables visual contents and corresponding attributes to collectively focus on important channels and regions for the support set. And the feature selection is also achieved for query set with only visual information while the attributes are not available. Therefore, representations from both sets are improved in a fine-grained manner. Moreover, an attention alignment mechanism is proposed to distill knowledge from the guidance of attributes to the pure-visual branch for samples without attributes. Extensive experiments and analysis show that our proposed module can significantly improve simple metric-based approaches to achieve state-of-the-art performance on different datasets and settings.