论文标题
使用两种类型的瓷砖的斐波那契数字,金矩形数字和雅各布斯特数字的新组合解释
New Combinatorial Interpretations of the Fibonacci Numbers Squared, Golden Rectangle Numbers, and Jacobsthal Numbers Using Two Types of Tile
论文作者
论文摘要
我们认为具有单位宽度和$(1,1)$ - 栅栏瓷砖的$ n $ board(尺寸$ n \ times1 $)的平铺。 $(1,1)$ - 栅栏瓷砖由两个单位宽度的正方形枯草组成,这些平方英尺被单位宽度隔开。我们表明,使用单位宽度正方形和$(1,1)$ - 围栏瓷砖等于fibonacci数字时,当$ n $均匀时(均为两个连续的fibonacci number的乘积)时,使用单位宽度的瓷砖和$(1,1)$ - 围栏瓷砖的方法(当$ N $奇怪时)。我们还表明,使用$ n $ uke Square和Fence Tiles的木板砖块数量是一个jacobsthal的数字。使用组合技术,我们以直接的方式证明了涉及斐波那契和雅各布斯数字总和的身份。这些身份中的一些似乎是新的。我们还构建并获得了一个已知的帕斯卡式三角形(其交替的三角形和一侧的零)的身份,其$(n,k)$ th条目是使用$ n $ tiles的瓷砖数量,其中$ k $是围栏瓷砖。对于$ n $板的瓷砖,这个三角形与类似的关系之间存在一个简单的关系。还展示了三角形和Riordan阵列之间的连接。在三角形的帮助下,我们表达了斐波那契数平方,黄金矩形数量和雅各布斯特数字,作为两个二项式系数的产物的两次总和。
We consider the tiling of an $n$-board (a board of size $n\times1$) with squares of unit width and $(1,1)$-fence tiles. A $(1,1)$-fence tile is composed of two unit-width square subtiles separated by a gap of unit width. We show that the number of ways to tile an $n$-board using unit-width squares and $(1,1)$-fence tiles is equal to a Fibonacci number squared when $n$ is even and a golden rectangle number (the product of two consecutive Fibonacci numbers) when $n$ is odd. We also show that the number of tilings of boards using $n$ such square and fence tiles is a Jacobsthal number. Using combinatorial techniques we prove identities involving sums of Fibonacci and Jacobsthal numbers in a straightforward way. Some of these identities appear to be new. We also construct and obtain identities for a known Pascal-like triangle (which has alternating ones and zeros along one side) whose $(n,k)$th entry is the number of tilings using $n$ tiles of which $k$ are fence tiles. There is a simple relation between this triangle and the analogous one for tilings of an $n$-board. Connections between the triangles and Riordan arrays are also demonstrated. With the help of the triangles, we express the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers as double sums of products of two binomial coefficients.