论文标题

亚马逊雨林中基于多模式分割的基于零散的烧伤疤痕识别

Multimodal Noisy Segmentation based fragmented burn scars identification in Amazon Rainforest

论文作者

Mohla, Satyam, Mohla, Sidharth, Guha, Anupam, Banerjee, Biplab

论文摘要

由于难以访问的雨林中的野火而引起的烧伤痕迹对于各种灾难管理和生态学研究很重要。可耕地的景观和多样化的种植模式的分散性质通常阻止了烧伤疤痕的精确地图。多模式数据的遥感和可用性的最新进展为此映射问题提供了可行的解决方案。但是,由于其外观相似的土地模式,严重的燃烧痕迹性质和部分标记为嘈杂的数据集,因此很难分割烧伤标记的任务。在这项工作中,我们提出了Amazonnet,这是一个基于卷积的网络,允许从多模式遥感图像中提取燃烧图案。该网络由UNET组成:一种众所周知的编码器解码器类型的体系结构,具有在生物医学分割中常用的跳过连接。拟议的框架利用堆叠的RGB-NIR频道通过在亚马逊尼亚的新弱标记的嘈杂数据集上进行训练,从而从牧场分割燃烧疤痕。我们的模型通过正确识别部分标记的烧伤疤痕并拒绝错误标记的样品来说明出色的性能,从而证明我们的方法是在多模式燃烧疤痕识别中有效利用基于深度学习的分割模型的方法之一。

Detection of burn marks due to wildfires in inaccessible rain forests is important for various disaster management and ecological studies. The fragmented nature of arable landscapes and diverse cropping patterns often thwart the precise mapping of burn scars. Recent advances in remote-sensing and availability of multimodal data offer a viable solution to this mapping problem. However, the task to segment burn marks is difficult because of its indistinguishably with similar looking land patterns, severe fragmented nature of burn marks and partially labelled noisy datasets. In this work we present AmazonNET -- a convolutional based network that allows extracting of burn patters from multimodal remote sensing images. The network consists of UNet: a well-known encoder decoder type of architecture with skip connections commonly used in biomedical segmentation. The proposed framework utilises stacked RGB-NIR channels to segment burn scars from the pastures by training on a new weakly labelled noisy dataset from Amazonia. Our model illustrates superior performance by correctly identifying partially labelled burn scars and rejecting incorrectly labelled samples, demonstrating our approach as one of the first to effectively utilise deep learning based segmentation models in multimodal burn scar identification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源