论文标题
晶格玻尔兹曼方法增强的单节点边界条件
Enhanced single-node boundary condition for the Lattice Boltzmann Method
论文作者
论文摘要
我们提出了一种新的方法,以在晶格Boltzmann方法的上下文中仅使用来自单个节点的数据来实现复杂形状的差异边界条件。所得的新方法表现出速度场的二阶收敛性,并且与已建立的Bouzidi,Firdaouss和Lalemand(2001)弯曲壁的边界条件相比,其准确性相似或更好。事实证明,该方法适合模拟有或没有规定运动的运动刚体或浸没的表面。新方法的核心思想是概括将反弹规则与插值相结合的边界条件的描述,并通过将插值中涉及的信息限制为边界的紧密近端来增强它们。
We propose a new way to implement Dirichlet boundary conditions for complex shapes using data from a single node only, in the context of the lattice Boltzmann method. The resulting novel method exhibits second-order convergence for the velocity field and shows similar or better accuracy than the well established Bouzidi, Firdaouss, and Lallemand (2001) boundary condition for curved walls, despite its local nature. The method also proves to be suitable to simulate moving rigid objects or immersed surfaces either with or without prescribed motion. The core idea of the new approach is to generalize the description of boundary conditions that combine bounce-back rule with interpolations and to enhance them by limiting the information involved in the interpolation to a close proximity of the boundary.