论文标题
评论“电极中具有电子松弛的量子传输:源自驱动的liouville-von neumann方法的Landauer型公式” [化学物理学杂志153,044103(2020)]
Comment on "Quantum transport with electronic relaxation in electrodes: Landauer-type formulas derived from the driven Liouville-von Neumann approach" [The Journal of Chemical Physics 153, 044103 (2020)]
论文作者
论文摘要
Chiang和Hsu在最近的一篇文章中[化学物理学杂志153,044103(2020)]检查了一个和两个站点电子连接处与有限储层相同。在这两个示例中,它们得出了分析溶液,并提供了从驱动的liouville-von neumann(DLVN)方程的稳态电流的渐近分析 - 一种开放的系统方法,用于在不相互作用的系统中放松系统中保持偏见。他们检查的两个站点连接具有破坏性干扰,它们显示导致DLVN在储层大小和放松方面的降低到Landauer极限。我们以前在DLVN及其多体类似物中都得出了稳态电流的一般解决方案[Gruss等人,Scientific Reports 6,24514(2016)]。多体模拟是一个lindblad主方程,当它仅限于非相互作用系统时,它正是DLVN。在这里,我们证明,将更一般的表达应用于相同的左右储层(即具有相同状态密度并耦合到系统的有限储层),而马尔可夫弛豫则提供了一种简单的分析形式,适用于任意但相同相互联系的连接的简单分析形式。此外,我们简要讨论了分别针对非相互作用和交互系统的电流与Landauer和Meir-Wingreen结果的收敛性。当储层的较小绿色功能开始符合波动 - 散落定理时,会聚发生。我们的方法阐明了Chiang和Hsu的行为观察到破坏性干扰。最后,我们表明分析结果产生了Gruss等人衍生的渐近公式。
In a recent article, Chiang and Hsu [The Journal of Chemical Physics 153, 044103 (2020)] examine one and two site electronic junctions identically connected to finite reservoirs. For these two examples, they derive analytical solutions, as well as provide asymptotic analyses, for the steady-state current from the driven Liouville-von Neumann (DLvN) equation - an open system approach to transport in non-interacting systems where relaxation maintains a bias. The two site junction they examine has destructive interference, which they show leads to slow convergence of the DLvN to the Landauer limit with respect to reservoir size and relaxation. We previously derived the general solution for the steady-state current in both the DLvN and its many-body analog [Gruss et al., Scientific Reports 6, 24514 (2016)]. The many-body analog is a Lindblad master equation, which, when restricted to non-interacting systems, is exactly the DLvN. Here, we demonstrate that applying the more general expression to identical left and right reservoirs (i.e., finite reservoirs with the same density of states and coupling to the system) and Markovian relaxation provides a simple analytic form that applies to arbitrary, but identically connected, junctions. Moreover, we briefly discuss the convergence of the current to the Landauer and Meir-Wingreen result for non-interacting and interacting systems, respectively. Convergence occurs as the reservoirs' lesser Green's functions begin conforming to the fluctuation-dissipation theorem. Our approach sheds light on the behavior Chiang and Hsu observe for destructive interference. Finally, we show that the analytical results yield the asymptotic formulas derived in Gruss et al.