论文标题
带有字段的稳定地图的模量
Moduli of stable maps with fields
论文作者
论文摘要
我们构建了一个稳定地图的模量空间,该空间具有与三重$(x,e,s)$相关的字段(或带有射影模量空间的DM堆栈)的矢量捆绑包和一个部分。我们显示该类与稳定地图的模量空间上的虚拟基本类的标志相吻合到$ z = z = z(s)\ subset x $。我们表明,这给出了量子Lefschetz超平面原理的概括。这概括了Chang--li,Kim-oh和Chang-li的类似比较结果,并与Chen-Janda-Webb提出了不同的方法。
We construct a moduli space of stable maps with fields associated to a triple $(X,E,s)$ of a projective variety (or a DM stack with projective moduli space) a vector bundle and a section. We show the class coincides up to a sign with the virtual fundamental class on the moduli space of stable maps to $Z=Z(s)\subset X$. We show that this gives a generalization of the Quantum Lefschetz hyperplane principle. This generalizes similar comparison results of Chang--Li, Kim--Oh and Chang--Li and presents a different approach from Chen--Janda--Webb.