论文标题
集成基准和设计,用于对机器人代理的可再现和可访问评估
Integrated Benchmarking and Design for Reproducible and Accessible Evaluation of Robotic Agents
论文作者
论文摘要
随着机器人技术的成熟和复杂性的提高,比以往任何时候都更有必要重现机器人自主研究。与其他科学相比,基准测试自主权的具体挑战,例如软件堆栈的复杂性,硬件的可变性以及对数据驱动技术的依赖等。在本文中,我们描述了一个可再现的机器人技术研究的新概念,该概念将开发和基准测试整合在一起,从而从研究/开发过程开始就可以“通过设计”获得可重复性。我们首先提供总体概念目标,以实现这一目标,然后提供我们建立的具体实例:Duckienet。该设置的中心组件之一是Duckietown Autolab,这是一种远程可访问的标准化设置,本身也相对较低且可重现。评估代理时,对接口的仔细定义允许用户使用仿真,日志或远程自动化硬件设置在本地和远程评估中进行选择。我们通过分析使用基础架构进行实验的可重复性来验证系统,并表明不同机器人硬件和不同远程实验室之间的差异较低。
As robotics matures and increases in complexity, it is more necessary than ever that robot autonomy research be reproducible. Compared to other sciences, there are specific challenges to benchmarking autonomy, such as the complexity of the software stacks, the variability of the hardware and the reliance on data-driven techniques, amongst others. In this paper, we describe a new concept for reproducible robotics research that integrates development and benchmarking, so that reproducibility is obtained "by design" from the beginning of the research/development processes. We first provide the overall conceptual objectives to achieve this goal and then a concrete instance that we have built: the DUCKIENet. One of the central components of this setup is the Duckietown Autolab, a remotely accessible standardized setup that is itself also relatively low-cost and reproducible. When evaluating agents, careful definition of interfaces allows users to choose among local versus remote evaluation using simulation, logs, or remote automated hardware setups. We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs.