论文标题

用于快速贝叶斯校准脑肿瘤模型的几何感知神经求解器

Geometry-aware neural solver for fast Bayesian calibration of brain tumor models

论文作者

Ezhov, Ivan, Mot, Tudor, Shit, Suprosanna, Lipkova, Jana, Paetzold, Johannes C., Kofler, Florian, Navarro, Fernando, Pellegrini, Chantal, Kollovieh, Marcel, Metz, Marie, Wiestler, Benedikt, Menze, Bjoern

论文摘要

脑肿瘤动力学的建模有可能提高治疗计划。当前的建模方法诉诸于数值求解器,这些求解器根据给定的微分方程模拟肿瘤进展。使用高效的数值求解器,单个正向模拟最多需要几分钟的计算。同时,肿瘤建模的临床应用通常意味着解决一个反问题,当通过采样用于贝叶斯模型个性化时,需要数以万计的前向模型评估。这导致了临床翻译的总推理时间昂贵。尽管最近的数据驱动方法能够模拟物理模拟,但它们往往会概括为患者特定解剖学施加的边界条件的可变性而失败。在本文中,我们提出了一个可学习的替代物,用于模拟肿瘤生长,该肿瘤生长将生物物理模型参数直接映射到模拟输出,即局部肿瘤细胞密度,同时尊重患者的几何形状。我们针对胶质瘤患者的贝叶斯肿瘤模型个性化测试神经求解器。使用拟议的替代物的贝叶斯推断产生的估计值类似于通过使用常规数值求解器求解前向模型获得的估计。近实时计算成本呈现出适合临床环境的建议方法。该代码可在https://github.com/ivanez/tumor-surrogate上找到。

Modeling of brain tumor dynamics has the potential to advance therapeutic planning. Current modeling approaches resort to numerical solvers that simulate the tumor progression according to a given differential equation. Using highly-efficient numerical solvers, a single forward simulation takes up to a few minutes of compute. At the same time, clinical applications of tumor modeling often imply solving an inverse problem, requiring up to tens of thousands forward model evaluations when used for a Bayesian model personalization via sampling. This results in a total inference time prohibitively expensive for clinical translation. While recent data-driven approaches become capable of emulating physics simulation, they tend to fail in generalizing over the variability of the boundary conditions imposed by the patient-specific anatomy. In this paper, we propose a learnable surrogate for simulating tumor growth which maps the biophysical model parameters directly to simulation outputs, i.e. the local tumor cell densities, whilst respecting patient geometry. We test the neural solver on Bayesian tumor model personalization for a cohort of glioma patients. Bayesian inference using the proposed surrogate yields estimates analogous to those obtained by solving the forward model with a regular numerical solver. The near-real-time computation cost renders the proposed method suitable for clinical settings. The code is available at https://github.com/IvanEz/tumor-surrogate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源