论文标题

Deepsun:用于太阳火光预测的机器学习 - 安排服务

DeepSun: Machine-Learning-as-a-Service for Solar Flare Prediction

论文作者

Abduallah, Yasser, Wang, Jason T. L., Nie, Yang, Liu, Chang, Wang, Haimin

论文摘要

太阳火光预测在理解和预测空间天气中起着重要作用。 Helioseisic和磁成像仪(HMI)的主要目标是NASA太阳动力学天文台的工具之一,是研究太阳可变性的起源并表征太阳的磁性活性。 HMI提供了对太阳向量磁场的连续全盘观测,并具有高节奏数据,从而导致可靠的预测能力。然而,利用这些数据的太阳耀斑预测工作仍然有限。在本文中,我们提出了一种称为Deepsun的机器学习框架(MLAAS)框架,用于根据HMI的数据产品预测Web上的太阳耀斑。具体而言,我们通过利用空间天气HMI活动区域贴片(Sharp)提供的物理参数来构建培训数据,并根据国家环境信息中心(NCEI)可用的X射线火炬目录,将太阳耀斑分为四个类别,即B,C,M,X。因此,手头的太阳耀斑预测问题本质上是一个多级(即四类)分类问题。 DeepSun系统采用多种机器学习算法来解决此多级预测问题,并为远程编程用户提供了应用程序编程接口(API)。据我们所知,DeepSun是第一个能够通过互联网预测太阳耀斑的MLAA工具。

Solar flare prediction plays an important role in understanding and forecasting space weather. The main goal of the Helioseismic and Magnetic Imager (HMI), one of the instruments on NASA's Solar Dynamics Observatory, is to study the origin of solar variability and characterize the Sun's magnetic activity. HMI provides continuous full-disk observations of the solar vector magnetic field with high cadence data that lead to reliable predictive capability; yet, solar flare prediction effort utilizing these data is still limited. In this paper, we present a machine-learning-as-a-service (MLaaS) framework, called DeepSun, for predicting solar flares on the Web based on HMI's data products. Specifically, we construct training data by utilizing the physical parameters provided by the Space-weather HMI Active Region Patches (SHARP) and categorize solar flares into four classes, namely B, C, M, X, according to the X-ray flare catalogs available at the National Centers for Environmental Information (NCEI). Thus, the solar flare prediction problem at hand is essentially a multi-class (i.e., four-class) classification problem. The DeepSun system employs several machine learning algorithms to tackle this multi-class prediction problem and provides an application programming interface (API) for remote programming users. To our knowledge, DeepSun is the first MLaaS tool capable of predicting solar flares through the Internet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源