论文标题

拆箱量子黑匣子模型:学习非马克维亚动力学

Unboxing Quantum Black Box Models: Learning Non-Markovian Dynamics

论文作者

Krastanov, Stefan, Head-Marsden, Kade, Zhou, Sisi, Flammia, Steven T., Jiang, Liang, Narang, Prineha

论文摘要

表征环境的内存特性对于量子位和其他高级量子系统的高保真控制至关重要。但是,当前的非马克维亚断层扫描技术要么仅限于离散的超级操作器,要么采用机器学习方法,它们都不提供对量子系统动力学的物理见解。为了规避这一限制,我们设计了明确编码物理约束的学习体系结构,例如以差异形式以完全阳性的痕量保护地图的属性。此方法保留了机器学习方法的多功能性,而无需牺牲传统参数估计方法的效率和保真度。我们的方法提供了机器学习和不透明的超级操作者所缺乏的物理解释性。此外,它意识到基于超级驱动器的断层扫描通常会忽略的基本连续动力学。此范式为吸引噪声的最佳量子控制铺平了道路,并为利用浴缸作为控制和错误缓解资源开辟了道路。

Characterizing the memory properties of the environment has become critical for the high-fidelity control of qubits and other advanced quantum systems. However, current non-Markovian tomography techniques are either limited to discrete superoperators, or they employ machine learning methods, neither of which provide physical insight into the dynamics of the quantum system. To circumvent this limitation, we design learning architectures that explicitly encode physical constraints like the properties of completely-positive trace-preserving maps in a differential form. This method preserves the versatility of the machine learning approach without sacrificing the efficiency and fidelity of traditional parameter estimation methods. Our approach provides the physical interpretability that machine learning and opaque superoperators lack. Moreover, it is aware of the underlying continuous dynamics typically disregarded by superoperator-based tomography. This paradigm paves the way to noise-aware optimal quantum control and opens a path to exploiting the bath as a control and error mitigation resource.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源