论文标题

通过多项式的根源自由卷积能力

Free Convolution Powers via Roots of Polynomials

论文作者

Steinerberger, Stefan

论文摘要

令$μ$为真实线上的紧凑型概率度量。 Bercovici-Voiculescu和Nica-Speicher证明了任何真正的$ k \ geq 1 $的自由卷积功率$μ^{\ boxplus k} $。此简短说明的目的是在多项式和根部的衍生物中给出$μ^{\ boxplus k} $的基本描述。这座桥使我们能够在自由概率和多项式的渐近行为之间来回切换。

Let $μ$ be a compactly supported probability measure on the real line. Bercovici-Voiculescu and Nica-Speicher proved the existence of a free convolution power $μ^{\boxplus k}$ for any real $k \geq 1$. The purpose of this short note is to give an elementary description of $μ^{\boxplus k}$ in terms of of polynomials and roots of their derivatives. This bridge allows us to switch back and forth between free probability and the asymptotic behavior of polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源