论文标题

双向波中的家谱

Genealogies in bistable waves

论文作者

Etheridge, Alison, Penington, Sarah

论文摘要

我们研究了作用于二倍体种群的选择模型(每个人都携带每个基因的两个副本),生活在一个空间维度中。我们认为一个特定的基因以两种形式出现(等位基因)$ a $ and $ a $,并且携带$ aa $的个人的健身性高于$ aa $个体,而$ aa $个人的健身性低于$ aa $ and $ aa $个人。有利的$ a $等位基因的比例大约根据人口扩展。我们证明,在合适的时间范围内,随着人口密度为无穷大,从波前收敛到金曼聚集的样本$ a $等位基因的家谱。这与定向选择的情况形成鲜明对比,其中相应的极限被认为是Bolthausen-Sznitman合并的情况。证明使用“示踪动力学”。

We study a model of selection acting on a diploid population (one in which each individual carries two copies of each gene) living in one spatial dimension. We suppose a particular gene appears in two forms (alleles) $A$ and $a$, and that individuals carrying $AA$ have a higher fitness than $aa$ individuals, while $Aa$ individuals have a lower fitness than both $AA$ and $aa$ individuals. The proportion of advantageous $A$ alleles expands through the population approximately according to a travelling wave. We prove that on a suitable timescale, the genealogy of a sample of $A$ alleles taken from near the wavefront converges to a Kingman coalescent as the population density goes to infinity. This contrasts with the case of directional selection in which the corresponding limit is thought to be the Bolthausen-Sznitman coalescent. The proof uses 'tracer dynamics'.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源