论文标题
使用姿势和凝视先知了解艺术历史图像中的构图结构
Understanding Compositional Structures in Art Historical Images using Pose and Gaze Priors
论文作者
论文摘要
图像组成作为分析艺术品的工具对艺术史学家而言至关重要。这些组成可用于分析图像中的相互作用以研究艺术家及其艺术品。马克斯·伊姆达尔(Max Imdahl)在他的作品中,名为伊科尼克(Ikonik),以及20世纪的其他著名艺术史学家,强调了图像结构构成的审美和语义重要性。理解图像中的基本组成结构是具有挑战性的,并且是一项耗时的任务。使用计算机视觉技术(1)自动生成这些结构可以通过节省大量时间来帮助艺术史学家进行复杂的分析;提供概述并访问庞大的图像存储库,(2)还为理解机器制造的图像的理解提供了重要的一步。在这项工作中,我们尝试使用现有的最新机器学习技术来自动化此过程,而无需进行任何形式的培训。我们的方法受到Max Imdahl的开创性工作的启发,重点关注图像组成的两个中心主题:(a)对艺术品的动作区域和动作线的检测; (b)前景和背景的基于姿势的分割。当前,我们的方法适用于图像中主角(人)组成的艺术品。为了在定性和定量上验证我们的方法,我们进行了一项涉及专家和非专家的用户研究。该研究的结果与我们的方法高度相关,也证明了其域 - 不合稳定的能力。我们已经在https://github.com/image-compostion-canvas-group/image-compostion-canvas上开源代码。
Image compositions as a tool for analysis of artworks is of extreme significance for art historians. These compositions are useful in analyzing the interactions in an image to study artists and their artworks. Max Imdahl in his work called Ikonik, along with other prominent art historians of the 20th century, underlined the aesthetic and semantic importance of the structural composition of an image. Understanding underlying compositional structures within images is challenging and a time consuming task. Generating these structures automatically using computer vision techniques (1) can help art historians towards their sophisticated analysis by saving lot of time; providing an overview and access to huge image repositories and (2) also provide an important step towards an understanding of man made imagery by machines. In this work, we attempt to automate this process using the existing state of the art machine learning techniques, without involving any form of training. Our approach, inspired by Max Imdahl's pioneering work, focuses on two central themes of image composition: (a) detection of action regions and action lines of the artwork; and (b) pose-based segmentation of foreground and background. Currently, our approach works for artworks comprising of protagonists (persons) in an image. In order to validate our approach qualitatively and quantitatively, we conduct a user study involving experts and non-experts. The outcome of the study highly correlates with our approach and also demonstrates its domain-agnostic capability. We have open-sourced the code at https://github.com/image-compostion-canvas-group/image-compostion-canvas.