论文标题
在无限图和相关随机步行的无限图和光谱维度上的指标的常规保形维度
Ahlfors Regular Conformal Dimension of Metrics on Infinite Graphs and Spectral Dimension of the Associated Random Walks
论文作者
论文摘要
准对称是公制空间之间同态的良好特性,而AHLFORS的常规保形尺寸是一种准对称不变的。在本文中,我们考虑了无限图上的ahlfors定期共形维度,并表明该概念与$ p $ energies的关键指数相吻合。此外,我们在AHLFOR的常规保形维度与图形的光谱维度之间提供了关系。
Quasisymmetry is a well-studied property of homeomorphisms between metric spaces, and Ahlfors regular conformal dimension is a quasisymmetric invariant. In the present paper, we consider the Ahlfors regular conformal dimension of metrics on infinite graphs, and show that this notion coincides with the critical exponent of $p$-energies. Moreover, we give a relation between the Ahlfors regular conformal dimension and the spectral dimension of a graph.