论文标题

使用量子假想时间演化,自旋系统的有限温度静态和动力学特性的量子计算

Quantum Computation of Finite-Temperature Static and Dynamical Properties of Spin Systems Using Quantum Imaginary Time Evolution

论文作者

Sun, Shi-Ning, Motta, Mario, Tazhigulov, Ruslan N., Tan, Adrian T. K., Chan, Garnet Kin-Lic, Minnich, Austin J.

论文摘要

开发可扩展的量子算法来研究量子多体系统的有限温度物理学,由于量子硬件的最新进展引起了人们的极大兴趣。但是,此类算法目前的形式需要超过当前量子计算机功能的资源,除了有限的系统尺寸和可观察到的范围。在这里,我们报告了有限温度特性的计算,包括能量,静态和动力学相关函数以及自旋汉密尔顿人的激发光谱,在五克MM量子设备上最多四个位点。这些计算是使用量子假想时间演化(QITE)算法进行的,并通过多种算法改进进行了计算,包括一种利用对称性的方法,该方法可利用Qite所需的量子资源,减少电路优化程序,以减少电路挖掘和误差缓解技术以改善原始硬件数据的质量。我们的工作表明,与ANSATZ无关的QITE算法能够计算近期量子设备上的各种有限温度可观察物。

Developing scalable quantum algorithms to study finite-temperature physics of quantum many-body systems has attracted considerable interest due to recent advancements in quantum hardware. However, such algorithms in their present form require resources that exceed the capabilities of current quantum computers except for a limited range of system sizes and observables. Here, we report calculations of finite-temperature properties including energies, static and dynamical correlation functions, and excitation spectra of spin Hamiltonians with up to four sites on five-qubit IBM Quantum devices. These calculations are performed using the quantum imaginary time evolution (QITE) algorithm and made possible by several algorithmic improvements, including a method to exploit symmetries that reduces the quantum resources required by QITE, circuit optimization procedures to reduce circuit depth, and error mitigation techniques to improve the quality of raw hardware data. Our work demonstrates that the ansatz-independent QITE algorithm is capable of computing diverse finite-temperature observables on near-term quantum devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源