论文标题

本地子空间的隐式多维投影

Implicit Multidimensional Projection of Local Subspaces

论文作者

Bian, Rongzheng, Xue, Yumeng, Zhou, Liang, Zhang, Jian, Chen, Baoquan, Weiskopf, Daniel, Wang, Yunhai

论文摘要

我们提出了一种可视化方法,以使用隐式函数分化来了解多维投影对本地子空间的影响。在这里,我们将本地子空间理解为数据点的多维本地邻里。现有方法集中在多维数据点的投影上,并且忽略了邻里信息。我们的方法能够分析局部子空间的形状和方向信息,以通过感知局部结构来获得对数据全局结构的更多见解。局部子空间由由基础向量跨越的多维椭圆拟合。基于对隐式函数的多维投影的分析分化,提出了一种准确有效的矢量转换方法。结果可视化为字形,并使用我们有效的基于Web的可视化工具中支持的完整设计的相互作用进行分析。使用各种多维基准数据集证明了我们方法的有用性。我们的隐式分化矢量转换将通过数值比较评估。通过探索示例和用例来评估总体方法。

We propose a visualization method to understand the effect of multidimensional projection on local subspaces, using implicit function differentiation. Here, we understand the local subspace as the multidimensional local neighborhood of data points. Existing methods focus on the projection of multidimensional data points, and the neighborhood information is ignored. Our method is able to analyze the shape and directional information of the local subspace to gain more insights into the global structure of the data through the perception of local structures. Local subspaces are fitted by multidimensional ellipses that are spanned by basis vectors. An accurate and efficient vector transformation method is proposed based on analytical differentiation of multidimensional projections formulated as implicit functions. The results are visualized as glyphs and analyzed using a full set of specifically-designed interactions supported in our efficient web-based visualization tool. The usefulness of our method is demonstrated using various multi- and high-dimensional benchmark datasets. Our implicit differentiation vector transformation is evaluated through numerical comparisons; the overall method is evaluated through exploration examples and use cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源