论文标题

生长轨迹的深层建模,用于纵向遗失婴儿皮质表面的纵向预测

Deep Modeling of Growth Trajectories for Longitudinal Prediction of Missing Infant Cortical Surfaces

论文作者

Liu, Peirong, Wu, Zhengwang, Li, Gang, Yap, Pew-Thian, Shen, Dinggang

论文摘要

图表皮质生长轨迹对于理解大脑发育至关重要。但是,这种分析需要收集纵向数据,这可能是由于受试者撤离和扫描失败而具有挑战性的。在本文中,我们将使用空间图卷积神经网络(GCNN)引入一种用于皮质表面的纵向预测的方法,该方法将常规的CNN从欧几里得延伸到弯曲的歧管。所提出的方法旨在对皮层生长轨迹进行建模,并在多个时间点共同预测内部和外皮层表面。在损失计算中采用二进制标志来处理丢失的数据,我们完全利用所有可用的皮质表面来训练我们的深度学习模型,而无需完整的纵向数据集合。预测表面直接允许皮质属性(例如皮质厚度,曲率和凸度)计算以进行后续分析。我们将通过实验结果证明我们的方法能够捕获时空皮质生长模式的非线性,并可以提高准确性预测皮质表面。

Charting cortical growth trajectories is of paramount importance for understanding brain development. However, such analysis necessitates the collection of longitudinal data, which can be challenging due to subject dropouts and failed scans. In this paper, we will introduce a method for longitudinal prediction of cortical surfaces using a spatial graph convolutional neural network (GCNN), which extends conventional CNNs from Euclidean to curved manifolds. The proposed method is designed to model the cortical growth trajectories and jointly predict inner and outer cortical surfaces at multiple time points. Adopting a binary flag in loss calculation to deal with missing data, we fully utilize all available cortical surfaces for training our deep learning model, without requiring a complete collection of longitudinal data. Predicting the surfaces directly allows cortical attributes such as cortical thickness, curvature, and convexity to be computed for subsequent analysis. We will demonstrate with experimental results that our method is capable of capturing the nonlinearity of spatiotemporal cortical growth patterns and can predict cortical surfaces with improved accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源