论文标题
从前的可视化时间:了解因果关系的文本叙事的使用
Once Upon A Time In Visualization: Understanding the Use of Textual Narratives for Causality
论文作者
论文摘要
因果关系可视化可以帮助人们了解事件的时间链,例如在分布式系统中发送的消息,历史冲突中的因果关系或随着时间的推移政治参与者之间的相互作用。但是,随着这些事件序列的规模和复杂性的增长,即使这些可视化也可能会变得压倒性地使用。在本文中,我们建议将文本叙述用作数据驱动的讲故事方法来增强因果关系可视化。我们首先为如何使用文本叙述来描述因果数据,为设计空间提供了一个设计空间。然后,我们从众包用户研究中介绍了结果,要求参与者从两个因果关系可视化中恢复因果关系信息 - 伴侣图和Hasse图 - 与没有相关的文本叙述。最后,我们描述了原因,这是一种因果可视化系统,用于了解特定干预措施如何影响因果模型。该系统根据我们的设计空间结合了自动文本叙事机制。我们通过与使用该系统理解复杂事件的专家的访谈来验证CAUSATWORKS。
Causality visualization can help people understand temporal chains of events, such as messages sent in a distributed system, cause and effect in a historical conflict, or the interplay between political actors over time. However, as the scale and complexity of these event sequences grows, even these visualizations can become overwhelming to use. In this paper, we propose the use of textual narratives as a data-driven storytelling method to augment causality visualization. We first propose a design space for how textual narratives can be used to describe causal data. We then present results from a crowdsourced user study where participants were asked to recover causality information from two causality visualizations--causal graphs and Hasse diagrams--with and without an associated textual narrative. Finally, we describe CAUSEWORKS, a causality visualization system for understanding how specific interventions influence a causal model. The system incorporates an automatic textual narrative mechanism based on our design space. We validate CAUSEWORKS through interviews with experts who used the system for understanding complex events.