论文标题

在$ k $ - 可油的最大直径上

On the maximum diameter of $k$-colorable graphs

论文作者

Czabarka, Éva, Singgih, Inne, Székely, László A.

论文摘要

ERDS,Pach,Pollack和Tuza [J。组合。理论,b 47,(1989),279-285]猜想,$ k_ {2r} $的直径 - 免费连接的订单$ n $和最低度$δ\ geq 2 $的直径最多是$ \ frac {2(r-1)(r-1)(r-1)(3r + 2)}} {(3r + 2)} {(2r^2-1){(2r^2-1){(2r^2-1) $ r \ ge 2 $,如果$δ$是$(R-1)(3R+2)$的倍数。对于每$ r> 1 $和$δ\ ge 2(r-1)$,我们创建$ k_ {2r} $ - 免费图形,最低度$δ$和直径$ \ frac {(6r-5)n} {(6r-5)n} {(2r-1)δ+2r-3}+o(2r-1)Δ+2r-3}+o(o(o( $δ> 2(R-1)(3R+2)(2R-3)$。本文的其余部分证明了在更强的假设,即$ k $ - 可溶性下的积极结果,而不是$ k_ {k+1} $ - 免费。我们表明,连接的$ k $ - 颜色图的直径具有最低度$ \ geqδ$和订单$ n $的直径最多是$ \ \ weft(3- \ frac {1} {1} {k-1} {k-1} \ right)\ frac {n}δ+o(1)$,而对于$ k = 3 $,则$ \ frac {57n} {23δ}+o \ left(1 \ right)$。

Erdős, Pach, Pollack and Tuza [J. Combin. Theory, B 47, (1989), 279-285] conjectured that the diameter of a $K_{2r}$-free connected graph of order $n$ and minimum degree $δ\geq 2$ is at most $\frac{2(r-1)(3r+2)}{(2r^2-1)}\cdot \frac{n}δ + O(1)$ for every $r\ge 2$, if $δ$ is a multiple of $(r-1)(3r+2)$. For every $r>1$ and $δ\ge 2(r-1)$, we create $K_{2r}$-free graphs with minimum degree $δ$ and diameter $\frac{(6r-5)n}{(2r-1)δ+2r-3}+O(1)$, which are counterexamples to the conjecture for every $r>1$ and $δ>2(r-1)(3r+2)(2r-3)$. The rest of the paper proves positive results under a stronger hypothesis, $k$-colorability, instead of being $K_{k+1}$-free. We show that the diameter of connected $k$-colorable graphs with minimum degree $\geq δ$ and order $n$ is at most $\left(3-\frac{1}{k-1}\right)\frac{n}δ+O(1)$, while for $k=3$, it is at most $\frac{57n}{23δ}+O\left(1\right)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源