论文标题

半监督病理学分割,并分解表示

Semi-supervised Pathology Segmentation with Disentangled Representations

论文作者

Jiang, Haochuan, Chartsias, Agisilaos, Zhang, Xinheng, Papanastasiou, Giorgos, Semple, Scott, Dweck, Mark, Semple, David, Dharmakumar, Rohan, Tsaftaris, Sotirios A.

论文摘要

自动化病理分割仍然是临床实践中有价值的诊断工具。但是,收集培训数据具有挑战性。通过结合标记和未标记的数据,半监督的方法可以为数据稀缺提供解决方案。半监督学习的方法依赖于以共同方式学习适合任务的重建目标(作为自学目标)。在这里,我们提出了解剖病理学分解网络(APD-NET),该网络是一种病理分割模型,试图首次共同学习:解剖学,模态和病理学的解剖。该模型以半监督的方式进行了训练,其新的重建损失直接旨在通过有限的注释来改善病理分割。此外,提出了联合优化策略,以充分利用可用的注释。我们使用两个带有LGE-MRI扫描的私人心脏梗塞分段数据集评估我们的方法。 APD-NET可以通过很少的注释执行病理分割,维持不同量的监督性能以及相关的深度学习方法。

Automated pathology segmentation remains a valuable diagnostic tool in clinical practice. However, collecting training data is challenging. Semi-supervised approaches by combining labelled and unlabelled data can offer a solution to data scarcity. An approach to semi-supervised learning relies on reconstruction objectives (as self-supervision objectives) that learns in a joint fashion suitable representations for the task. Here, we propose Anatomy-Pathology Disentanglement Network (APD-Net), a pathology segmentation model that attempts to learn jointly for the first time: disentanglement of anatomy, modality, and pathology. The model is trained in a semi-supervised fashion with new reconstruction losses directly aiming to improve pathology segmentation with limited annotations. In addition, a joint optimization strategy is proposed to fully take advantage of the available annotations. We evaluate our methods with two private cardiac infarction segmentation datasets with LGE-MRI scans. APD-Net can perform pathology segmentation with few annotations, maintain performance with different amounts of supervision, and outperform related deep learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源