论文标题

通过标记来控制假新闻:分支过程分析

Controlling Fake News by Tagging: A Branching Process Analysis

论文作者

Kapsikar, Suyog, Saha, Indrajit, Agarwal, Khushboo, Kavitha, Veeraruna, Zhu, Quanyan

论文摘要

假新闻在在线社交网络(OSN)上的传播已成为问题。这些平台还用于传播重要的真实信息。因此,有必要减轻假新闻,而不会显着影响真正的新闻的传播。我们利用用户识别虚假新闻的固有功能,并提出一种基于警告的控制机制来遏制这种传播。警告是基于以前用户的响应,该响应表明了新闻的真实性。我们使用依赖人群的连续时间多类分支过程来描述警告机制下的扩散。我们还为这些分支过程有了新的结果。使用随机近似工具得出单个种群的(时间)渐近比例。使用这些,相关类型1,得出了2型性能,并解决了适当的优化问题。提出的机制有效地控制了假新闻,对真实新闻的传播的影响微不足道。我们使用蒙特卡洛模拟在Twitter数据提供的网络连接上验证绩效指标。

The spread of fake news on online social networks (OSNs) has become a matter of concern. These platforms are also used for propagating important authentic information. Thus, there is a need for mitigating fake news without significantly influencing the spread of real news. We leverage users' inherent capabilities of identifying fake news and propose a warning-based control mechanism to curb this spread. Warnings are based on previous users' responses that indicate the authenticity of the news. We use population-size dependent continuous-time multi-type branching processes to describe the spreading under the warning mechanism. We also have new results towards these branching processes. The (time) asymptotic proportions of the individual populations are derived using stochastic approximation tools. Using these, relevant type 1, type 2 performances are derived and an appropriate optimization problem is solved. The proposed mechanism effectively controls fake news, with negligible influence on the propagation of authentic news. We validate performance measures using Monte Carlo simulations on network connections provided by Twitter data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源