论文标题
立方复合物的男性子分区的面部数量
Face numbers of barycentric subdivisions of cubical complexes
论文作者
论文摘要
$ h $ - 多种物质分区的任何$ n $二维立方体综合体具有非负立方体$ h $ - vector,仅具有真正的根源,并由$ b_n $ type $ b_n $的Eulerian多项式隔离。该结果适用于可壳的立方体复合物的barycentric细分,尤其是立方体凸多属的barycentric分区,并肯定地回答了Brenti,Mohammadi和Welker的问题。
The $h$-polynomial of the barycentric subdivision of any $n$-dimensional cubical complex with nonnegative cubical $h$-vector is shown to have only real roots and to be interlaced by the Eulerian polynomial of type $B_n$. This result applies to barycentric subdivisions of shellable cubical complexes and, in particular, to barycentric subdivisions of cubical convex polytopes and answers affirmatively a question of Brenti, Mohammadi and Welker.