论文标题

零偏置深度学习,以准确识别物联网(IoT)设备

Zero-Bias Deep Learning for Accurate Identification of Internet of Things (IoT) Devices

论文作者

Liu, Yongxin, Wang, Jian, Li, Jianqiang, Song, Houbing, Yang, Thomas, Niu, Shuteng, Ming, Zhong

论文摘要

物联网(IoT)提供了否则不可能的应用程序和服务。但是,物联网的开放性质使其容易受到网络安全威胁的攻击。尤其是,身份欺骗攻击,对手被动地倾听现有无线电通信,然后模仿合法设备进行恶意活动的身份。现有的解决方案采用密码签名来验证接收到的信息的可信度。在普遍的物联网中,可以披露密码学的秘密密钥并禁用验证机制。需要非结晶设备验证以确保值得信赖的物联网。在本文中,我们提出了一个使用物理层信号的物联网设备识别的增强深度学习框架。具体而言,我们使我们的框架能够报告看不见的IoT设备,并将零偏置层引入深层神经网络以提高鲁棒性和解释性。我们已经使用来自ADS-B(自动依赖性监视广播)的实际数据评估了提出的框架的有效性,即IoT在航空中的应用。所提出的框架有可能应用于在各种物联网应用程序和服务中准确识别物联网设备。代码和数据可在IEEE DataPort中找到。

The Internet of Things (IoT) provides applications and services that would otherwise not be possible. However, the open nature of IoT make it vulnerable to cybersecurity threats. Especially, identity spoofing attacks, where an adversary passively listens to existing radio communications and then mimic the identity of legitimate devices to conduct malicious activities. Existing solutions employ cryptographic signatures to verify the trustworthiness of received information. In prevalent IoT, secret keys for cryptography can potentially be disclosed and disable the verification mechanism. Non-cryptographic device verification is needed to ensure trustworthy IoT. In this paper, we propose an enhanced deep learning framework for IoT device identification using physical layer signals. Specifically, we enable our framework to report unseen IoT devices and introduce the zero-bias layer to deep neural networks to increase robustness and interpretability. We have evaluated the effectiveness of the proposed framework using real data from ADS-B (Automatic Dependent Surveillance-Broadcast), an application of IoT in aviation. The proposed framework has the potential to be applied to accurate identification of IoT devices in a variety of IoT applications and services. Codes and data are available in IEEE Dataport.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源