论文标题
量子硬球的Bose-Einstein凝结,作为沉积相变和玻色子和费米斯压力之间的新关系
Bose-Einstein Condensation of Quantum Hard-Spheres as a Deposition Phase Transition and New Relations Between Bosonic and Fermionic Pressures
论文作者
论文摘要
我们研究了van der waals近似中的大规范合奏中的硬核排斥的玻色网颗粒的相变。结果表明,非相关的玻色子颗粒的压力在数学上等同于核的统计多裂片模型的简化版本的压力,其表面张力系数消失了,而费舍尔指数$τ_f= \τ_f= \ frac {5} {5} {2} $,对于此类参数阶段,这是一定的。发现这些状态方程的相似性使我们能够证明,在目前的方法中,Bose-Einstein颗粒的高密度阶段是经典的宏观群集,在任何温度下,与经典硬球类似的温度下消失的熵是一种固态。为了证明这一点,我们建立了新的关系,这使我们能够在两种的玻色 - 内斯坦颗粒的压力方面相同表示费米 - 迪拉克颗粒的压力。
We investigate the phase transition of Bose-Einstein particles with the hard-core repulsion in the grand canonical ensemble within the Van der Waals approximation. It is shown that the pressure of non-relativistic Bose-Einstein particles is mathematically equivalent to the pressure of simplified version of the statistical multifragmentation model of nuclei with the vanishing surface tension coefficient and the Fisher exponent $τ_F = \frac{5}{2}$, which for such parameters has the 1-st order phase transition. The found similarity of these equations of state allows us to show that within the present approach the high density phase of Bose-Einstein particles is a classical macro-cluster with vanishing entropy at any temperature which, similarly to the classical hard spheres, is a kind of solid state. To show this we establish new relations which allow us to identically represent the pressure of Fermi-Dirac particles in terms of pressures of Bose-Einstein particles of two sorts.