论文标题
相对论哈密顿的超对称性是任意旋转的
Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin
论文作者
论文摘要
在哈密顿通勤的均匀元素和奇数元素时,显示出具有任意自旋粒子的相对论量子动力学的汉密尔顿人。对于这样的超对称性汉密尔顿人,确切的折叠式杜松子转化将退出,将其带入块对基形式形式,将正面和负能量子空间分开。在这里,增压在正能量和负能量的能量本征状之间转变。对于标量(Spin-Zero)玻色子的情况下,考虑了磁场中带电粒子的相对论动力学,以遵守Klein-Gordan方程,一个以Proca方程为特征的dirac(旋转一半)费米子和矢量(旋转一个)玻色子。
Hamiltonians describing the relativistic quantum dynamics of a particle with an arbitrary spin are shown to exhibit a supersymmetric structure when the even and odd elements of the Hamiltonian commute. For such supersymmetric Hamiltonians an exact Foldy-Wouthuysen transformation exits which brings it into a block-diagonal form separating the positive and negative energy subspaces. Here the supercharges transform between energy eigenstates of positive and negative energy. The relativistic dynamics of a charged particle in a magnetic field is considered for the case of a scalar (spin-zero) boson obeying the Klein-Gordan equation, a Dirac (spin one-half) fermion and a vector (spin-one) boson characterised by the Proca equation.