论文标题
通用均质三角形图第二部分的拉姆西理论:确切的大拉姆西学位
The Ramsey theory of the universal homogeneous triangle-free graph Part II: Exact big Ramsey degrees
论文作者
论文摘要
在作者先前的工作的基础上,对于每个无三角形的图$ \ mathbf {g} $,我们确定$ \ mathbf {g} $的副本上的等价关系,在通用的均质三角形图中,$ \ \ \ m nathcal {h} _3 $,每个类别的类别,所以,每个等等的类别, $ \ MATHCAL {H} _3 $。这表征了$ \ Mathcal {h} _3 $的确切大型Ramsey学位。因此,无三角形的亨森图是一个很大的拉姆西结构。
Building on previous work of the author, for each finite triangle-free graph $\mathbf{G}$, we determine the equivalence relation on the copies of $\mathbf{G}$ inside the universal homogeneous triangle-free graph, $\mathcal{H}_3$, with the smallest number of equivalence classes so that each one of the classes persists in every isomorphic subcopy of $\mathcal{H}_3$. This characterizes the exact big Ramsey degrees of $\mathcal{H}_3$. It follows that the triangle-free Henson graph is a big Ramsey structure.