论文标题

在界线之间阅读:持不同政见者的分析

Reading In-Between the Lines: An Analysis of Dissenter

论文作者

Rye, Erik, Blackburn, Jeremy, Beverly, Robert

论文摘要

内容创建者和社交网络努力执行法律和政策规范,例如阻止仇恨言论和用户,推动了不受限制的通信平台的兴起。最近的一项努力是Dissenter,这是一个浏览器和Web应用程序,可为任何网页提供对话覆盖。这些对话隐藏在视线中 - 持不同政见者的用户可以看到并参与这次对话,而使用其他浏览器的访客则忽略了他们的存在。此外,网站和内容所有者对对话没有任何权力,因为它位于其控制之外的覆盖层中。 在这项工作中,我们从2019年2月至2020年4月(14个月)的初步发布持不同政见者的评论,用户和正在讨论的网站的历史记录。我们的语料库包括101k用户对588k不同URL评论的评论。我们首先分析网络的宏特性,包括用户群,评论分布和增长。然后,我们使用毒性词典,观点API和自然语言处理模型来理解评论的性质并衡量特定网站和内容的倾向,以引起仇恨和令人反感的持不同政见者的评论。利用媒体偏见的精选排名,我们研究了左和右倾内容的可恨评论的条件概率。最后,我们将持不同政见者作为一个社交网络研究,并确定一群具有高评论毒性的核心用户。

Efforts by content creators and social networks to enforce legal and policy-based norms, e.g. blocking hate speech and users, has driven the rise of unrestricted communication platforms. One such recent effort is Dissenter, a browser and web application that provides a conversational overlay for any web page. These conversations hide in plain sight - users of Dissenter can see and participate in this conversation, whereas visitors using other browsers are oblivious to their existence. Further, the website and content owners have no power over the conversation as it resides in an overlay outside their control. In this work, we obtain a history of Dissenter comments, users, and the websites being discussed, from the initial release of Dissenter in Feb. 2019 through Apr. 2020 (14 months). Our corpus consists of approximately 1.68M comments made by 101k users commenting on 588k distinct URLs. We first analyze macro characteristics of the network, including the user-base, comment distribution, and growth. We then use toxicity dictionaries, Perspective API, and a Natural Language Processing model to understand the nature of the comments and measure the propensity of particular websites and content to elicit hateful and offensive Dissenter comments. Using curated rankings of media bias, we examine the conditional probability of hateful comments given left and right-leaning content. Finally, we study Dissenter as a social network, and identify a core group of users with high comment toxicity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源