论文标题
用于解决T-Even多项式特征值问题的理性均匀IRA算法
A rational Even-IRA algorithm for the solution of T-even polynomial eigenvalue problems
论文作者
论文摘要
在这项工作中,我们提出了一种理性的Krylov子空间方法,用于解决T-EVEN(即对称/偏斜)结构的实际大规模多项式特征值问题。我们的方法基于均匀的IRA算法。为了保留结构,应用了块最小底座铅笔的稀疏T型线性化。由于这种线性化,可以以便宜的方式计算Krylov基矢量。得出有理分解,以便我们的方法明确允许在迭代期间改变转移。这导致了能够以快速可靠的方式计算T-even矩阵多项式光谱的部分。
In this work we present a rational Krylov subspace method for solving real large-scale polynomial eigenvalue problems with T-even (that is, symmetric/skew-symmetric) structure. Our method is based on the Even-IRA algorithm. To preserve the structure, a sparse T-even linearization from the class of block minimal bases pencils is applied. Due to this linearization, the Krylov basis vectors can be computed in a cheap way. A rational decomposition is derived so that our method explicitly allows for changes of the shift during the iteration. This leads to a method that is able to compute parts of the spectrum of a T-even matrix polynomial in a fast and reliable way.