论文标题
具有完美,不完美和未知的FOV查看概率的360 VR视频的最佳流媒体流
Optimal Streaming of 360 VR Videos with Perfect, Imperfect and Unknown FoV Viewing Probabilities
论文作者
论文摘要
在本文中,我们研究了多质量瓷砖360虚拟现实(VR)视频的无线流从多载体系统中的多个单人体用户。为了捕获视野(FOV)预测的影响,我们考虑了三种FOV查看概率分布的案例,即完美,不完美和未知的FOV查看概率分布,并使用平均总效用,最差的总效用和最差的总效用作为各自的绩效指标。我们采用连续解码的速率分裂,以有效地传输不同360 VR视频的多组瓷砖,向其请求的用户传输。在每种情况下,我们都优化了瓷砖的编码速率,FOV的最低编码速率,常见和私人消息的速率以及传输边界向量,以最大程度地提高总效用。在这三种情况下,问题都具有挑战性的非凸优化问题。我们在每种情况下成功地将问题转化为具有可区分目标函数的凸(DC)编程问题的差异,并使用凹形convex程序(CCCP)获得了次优的解决方案。最后,数值结果表明,在所有三种情况下,所提出的解决方案对现有方案的收益显着。据我们所知,这是第一部揭示了FOV预测的影响及其准确性对多质量瓷砖360 VR视频流的影响的作品。
In this paper, we investigate wireless streaming of multi-quality tiled 360 virtual reality (VR) videos from a multi-antenna server to multiple single-antenna users in a multi-carrier system. To capture the impact of field-of-view (FoV) prediction, we consider three cases of FoV viewing probability distributions, i.e., perfect, imperfect and unknown FoV viewing probability distributions, and use the average total utility, worst average total utility and worst total utility as the respective performance metrics. We adopt rate splitting with successive decoding for efficient transmission of multiple sets of tiles of different 360 VR videos to their requesting users. In each case, we optimize the encoding rates of the tiles, minimum encoding rates of the FoVs, rates of the common and private messages and transmission beamforming vectors to maximize the total utility. The problems in the three cases are all challenging nonconvex optimization problems. We successfully transform the problem in each case into a difference of convex (DC) programming problem with a differentiable objective function, and obtain a suboptimal solution using concave-convex procedure (CCCP). Finally, numerical results demonstrate the proposed solutions achieve notable gains over existing schemes in all three cases. To the best of our knowledge, this is the first work revealing the impact of FoV prediction and its accuracy on the performance of streaming of multi-quality tiled 360 VR videos.