论文标题
在双曲线空间上的非线性schrödinger方程
On nonlinear Schrödinger equations on the hyperbolic space
论文作者
论文摘要
我们研究了PoincaréBall型号$ \ Mathbb {B}^n $,$ n \ geq 3 $的某些类别非线性Schrödinger方程的弱解决方案的存在。通过使用对称批判性和合适的群体理论论证的宫殿原理,我们确定了非平凡(弱)解决方案的存在。
We study existence of weak solutions for certain classes of nonlinear Schrödinger equations on the Poincaré ball model $\mathbb{B}^N$, $N\geq 3$. By using the Palais principle of symmetric criticality and suitable group theoretical arguments, we establish the existence of a nontrivial (weak) solution.