论文标题

地震噪声的统计表征和时间序列建模

Statistical characterization and time-series modeling of seismic noise

论文作者

Aggarwal, Kanchan, Mukhopadhyay, Siddhartha, Tangirala, Arun K

论文摘要

在地震数据分析中,开发地震噪声的统计模型是对高价值的行使,因为这些模型在检测地震事件的开始中起着关键作用。这些模型中的大多数通常都是基于某些关键假设的,即平稳性,线性和高斯性。尽管它们至关重要,但在验证对真实地震数据的这些假设方面的报道很少。这项工作的目标是(i)批判性地研究这些长期以来的假设,以及(ii)提出一个系统的程序来开发适当的时间序列模型。严格的统计分析表明,这些标准假设对正在研究的大多数数据集不存在;相反,它们具有其他特殊功能,例如异性恋和整合效应。基于这些新颖的发现,Arima-Garch模型是用于地震噪声的。对不同时间间隔的185美元实时数据集进行了研究,以研究噪声特征和模型结构的每日和季节性变化。几乎所有的数据集都对一阶非平稳性,异性态性和高斯性测试呈阳性,而$ 19 \%$的线性测试为否。还提供了有关每日和季节性变化的开发模型的结构均匀性的分析。

Developing statistical models for seismic noise is an exercise of high value in seismic data analysis since these models play a critical role in detecting the onset of seismic events. A majority of these models are usually built on certain critical assumptions, namely, stationarity, linearity, and Gaussianity. Despite their criticality, very little reported literature exists on validating these assumptions on real seismic data. The objectives of this work are (i) to critically study these long-held assumptions and (ii) to propose a systematic procedure for developing appropriate time-series models. A rigorous statistical analysis reveals that these standard assumptions do not hold for most of the data sets under study; rather they exhibit additional special features such as heteroskedasticity and integrating effects. Resting on these novel discoveries, ARIMA-GARCH models are developed for seismic noise. Studies are carried out on $185$ real-time data sets over different time intervals to study the daily and seasonal variations in noise characteristics and model structure. Nearly all datasets tested positive for first-order non-stationarity, heteroskedasticity, and Gaussianity, while $19\%$ tested negative for linearity. Analysis of the structural uniformity of the developed models with respect to daily and seasonal variations is also presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源