论文标题

变形网:通过同步形状变形空间的变形转移

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

论文作者

Sung, Minhyuk, Jiang, Zhenyu, Achlioptas, Panos, Mitra, Niloy J., Guibas, Leonidas J.

论文摘要

形状变形是任何几何处理工具箱中的重要组件。目的是实现单个或多个形状的直观变形,或将示例变形转移到新形状,同时保留变形形状的合理性。现有方法假设访问点级或零件级对应或在预处理阶段建立它们,从而限制了此类方法的范围和一般性。我们提出了formsyncnet,这是一种新方法,允许不需要明确的对应信息,允许一致和同步形状变形。从技术上讲,我们通过将变形编码为特定于类的理想化潜在空间来实现这一目标,同时将它们解码为直接在3D中运行的个体,特定于模型的线性变形动作空间。潜在的编码和解码由专门的(联合训练)神经网络执行。通过设计,我们网络的电感偏置导致具有多种理想特性的变形空间,例如跨不同变形途径的路径不变性,然后在实际空间中也大致保存。我们对多种替代方法进行定性和定量评估我们的框架,并表现出改善的性能。

Shape deformation is an important component in any geometry processing toolbox. The goal is to enable intuitive deformations of single or multiple shapes or to transfer example deformations to new shapes while preserving the plausibility of the deformed shape(s). Existing approaches assume access to point-level or part-level correspondence or establish them in a preprocessing phase, thus limiting the scope and generality of such approaches. We propose DeformSyncNet, a new approach that allows consistent and synchronized shape deformations without requiring explicit correspondence information. Technically, we achieve this by encoding deformations into a class-specific idealized latent space while decoding them into an individual, model-specific linear deformation action space, operating directly in 3D. The underlying encoding and decoding are performed by specialized (jointly trained) neural networks. By design, the inductive bias of our networks results in a deformation space with several desirable properties, such as path invariance across different deformation pathways, which are then also approximately preserved in real space. We qualitatively and quantitatively evaluate our framework against multiple alternative approaches and demonstrate improved performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源