论文标题
坎帕纳点和规范形式的强大价值观
Campana points and powerful values of norm forms
论文作者
论文摘要
我们给出了一个渐近公式,以涉及与数量场的galois扩展相关的符合规范形式的Orbifold家族的弱凸轮点数的数量。从这个公式中,我们在给定的Galois扩展名的$ \ Mathbb {q} $上得出了$ m $ -full Norm的渐近数。我们还为这些Orbifolds上的Campana点提供了一个渐近,这说明了这两个概念之间的巨大差异,我们将其与Pieropan,Smeets,Tanimoto和Várilly-Alvarado的Manin型猜想进行了比较。
We give an asymptotic formula for the number of weak Campana points of bounded height on a family of orbifolds associated to norm forms for Galois extensions of number fields. From this formula we derive an asymptotic for the number of elements with $m$-full norm over a given Galois extension of $\mathbb{Q}$. We also provide an asymptotic for Campana points on these orbifolds which illustrates the vast difference between the two notions, and we compare this to the Manin-type conjecture of Pieropan, Smeets, Tanimoto and Várilly-Alvarado.