论文标题
无限的地平线效用最大化时间间财富
Infinite horizon utility maximisation from inter-temporal wealth
论文作者
论文摘要
我们在最小的无竞技假设下,在无限范围的假设下,我们开发了一种二元性理论,该理论是在无限范围的假设下,最大限度地提高了跨阶段财富的预期寿命实用性,而没有限制的利润(NUPBR)。我们只使用缩进器,没有涉及同等标准措施的争论,因此,不需要更强大的条件,即无需消失风险的免费午餐(NFLVR)。我们的形式主义也没有改变问题的有限地平线版本。除了将Bouchard和Pham的工作扩展到任何地平线,并为较弱的无容易设置设置,我们还获得了更强的双重性语句,因为我们不承担根据定义,双域是原始空间的极性集。取而代之的是,我们采用了一种类似于用于时间间消费问题的方法,开发了缩水财富的超级智能及其路径,该特性产生了无限的地平线预算约束,并用于定义正确的双重变量。双重空间的结构使我们能够证明它是凸,而无需通过假设强迫此属性。我们继续扩大原始和双重域,以赋予它们固体,并使用利用FATOU收敛的超级融合结果,以确定扩大的双域是原始双重空间的双极性。由此产生的二元定理表明,凸的所有经典宗旨持有。此外,最佳的是,缩气的财富过程是潜在的趋势为零。我们设置了例子,其中包括一个股票,其风险市场价格是三维贝塞尔流程,因此满足NUPBR但不满意。
We develop a duality theory for the problem of maximising expected lifetime utility from inter-temporal wealth over an infinite horizon, under the minimal no-arbitrage assumption of No Unbounded Profit with Bounded Risk (NUPBR). We use only deflators, with no arguments involving equivalent martingale measures, so do not require the stronger condition of No Free Lunch with Vanishing Risk (NFLVR). Our formalism also works without alteration for the finite horizon version of the problem. As well as extending work of Bouchard and Pham to any horizon and to a weaker no-arbitrage setting, we obtain a stronger duality statement, because we do not assume by definition that the dual domain is the polar set of the primal space. Instead, we adopt a method akin to that used for inter-temporal consumption problems, developing a supermartingale property of the deflated wealth and its path that yields an infinite horizon budget constraint and serves to define the correct dual variables. The structure of our dual space allows us to show that it is convex, without forcing this property by assumption. We proceed to enlarge the primal and dual domains to confer solidity to them, and use supermartingale convergence results which exploit Fatou convergence, to establish that the enlarged dual domain is the bipolar of the original dual space. The resulting duality theorem shows that all the classical tenets of convex duality hold. Moreover, at the optimum, the deflated wealth process is a potential converging to zero. We work out examples, including a case with a stock whose market price of risk is a three-dimensional Bessel process, so satisfying NUPBR but not NFLVR.