论文标题
在相互作用的磁轨道的简单模型中充电振荡
Charge oscillations in a simple model of interacting magnetic orbits
论文作者
论文摘要
研究了磁场中两种或多个相互作用的电子轨道的精确本质状态,以耦合的费米表面的一类分解的汉密尔顿人。我们研究了允许建造本征态的歼灭创造算子的条件。对于两个相互作用的环形轨道,我们考虑重叠函数的振荡以及轨道之间电荷密度的传递作为反场的函数。傅立叶频率的表达在半经典状态下给出,它们取决于电子带的几何结构。该结构的概括是针对具有精确本征函数的几个相互作用轨道的链条提供的。
Exact eigenstates for a set of two or more interacting electronic orbits in a magnetic field are studied for a class of factorized Hamiltonians with coupled Fermi surfaces. We study the condition for the existence of annihilation-creation operators that allows for the construction of eigenstates. For the case of two interacting cyclotronic orbits, we consider the oscillations of the overlap function and the transfer of charge density between the orbits as function of the inverse field. The expressions of the Fourier frequencies are given in the semiclassical regime and they depend on the geometrical structure of the electronic bands. A generalization of this construction is provided for a chain of several interacting orbits with exact eigenfunctions.