论文标题

对称群体的单词度量

Word Measures on Symmetric Groups

论文作者

Hanany, Liam, Puder, Doron

论文摘要

修复$ r $发电机上的免费组$ f $中的单词$ w $。对称组中的A $ W $ -random排列$ s_n $是通过抽样$ r $ r $独立的统一随机排列$σ_{1},\ ldots,σ_{r} \ in s_ {n} $ in s_ {n} $和评估$ w \ w \ w \ feust(n} $ w \ feft(1} $} $} $},在[arxiv:1104.3991,arxiv:1202.3269]中,显示出$ w $ -random置换中的固定点的平均数量为$ 1+θ\ left(n^{1-π\ left(w \ w \ orir)} \ right)一个非关键元素。我们表明$π\ left(w \ right)$在对称组的所有稳定字符的估计中都起着作用。特别是,我们表明,对于所有$ t \ ge2 $,$ t $ -cycles的平均数为$ \ frac {1} {t} {t}+o \ left(n^{ - π\ left(w \ right)} \ right)$。作为一个应用程序,我们证明,对于每$ s $,每$ \ varepsilon> 0 $以及每一个足够大的$ r $,schreier图形,带有$ r $ r $随机生成器,描绘$ s $ s $ -tuples上的$ s_ {n} $的动作,最多有第二个eigenvalue $ s eigenvalue,最多可以在$ 2 \ sqrt {2r-sqrt {2r-asct+vareps+vareps+\ vareps。这项工作中的重要成分是对不必要连接的失速核心图的系统研究。

Fix a word $w$ in a free group $F$ on $r$ generators. A $w$-random permutation in the symmetric group $S_N$ is obtained by sampling $r$ independent uniformly random permutations $σ_{1},\ldots,σ_{r}\in S_{N}$ and evaluating $w\left(σ_{1},\ldots,σ_{r}\right)$. In [arXiv:1104.3991, arXiv:1202.3269] it was shown that the average number of fixed points in a $w$-random permutation is $1+θ\left(N^{1-π\left(w\right)}\right)$, where $π\left(w\right)$ is the smallest rank of a subgroup $H\le F$ containing $w$ as a non-primitive element. We show that $π\left(w\right)$ plays a role in estimates of all stable characters of symmetric groups. In particular, we show that for all $t\ge2$, the average number of $t$-cycles is $\frac{1}{t}+O\left(N^{-π\left(w\right)}\right)$. As an application, we prove that for every $s$, every $\varepsilon>0$ and every large enough $r$, Schreier graphs with $r$ random generators depicting the action of $S_{N}$ on $s$-tuples, have second eigenvalue at most $2\sqrt{2r-1}+\varepsilon$ asymptotically almost surely. An important ingredient in this work is a systematic study of not-necessarily connected Stallings core graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源