论文标题

完全动态的子管道覆盖物有有界追索的

Fully-Dynamic Submodular Cover with Bounded Recourse

论文作者

Gupta, Anupam, Levin, Roie

论文摘要

在覆盖问题中,我们获得了一个单调,非负suppoular函数$ f:2^n \ rightArrow \ mathbb {r} _+$,并希望找到Min-COST SET $ S \ subseteq n $,以便$ f(s)= f(n)$。当$ f $是覆盖范围功能时,这将捕获setCover。我们介绍了一个通用框架,用于在全动力的设置中解决此类问题,其中$ f $随时间变化,并且仅允许对解决方案的更新数量(追索)。对于具体性,假设每次$ t $的非负单位单调函数$ g_t $ $ g_t $被从活动集$ g^{(t)} $中删除。如果$ f^{(t)} = \ sum_ {g \ in g^{(t)}} g $是所有活动函数的总和,我们希望维护竞争性解决方案,以作为$ f^{(t)} $作为此主动设置的$ f^{(t)} $作为此主动设置的变化,并且依次低。 我们给出了一种算法,该算法维护$ o(\ log(f_ {max}/f_ {min}))$ - 竞争解决方案,其中$ f_ {max},f_ {min} $是$ f^{(t)} $的最大/最小的边际。该算法保证了$ O(\ log(c_ {max}/ c_ {min})\ cdot \ sum_ {t \ leq t} g_t(n))$的总求助。即使在离线环境中,这种竞争比率也是最好的,并且追索权的界限是最佳的对数因素。对于也具有阳性混合第三个衍生物的单调下一个函数,我们显示了$ o(\ sum_ {t \ leq t} g_t(n))$的最佳追索权。该结构化类包括设置覆盖功能,因此我们的算法匹配已知的$ O(\ log n)$ - 竞争力和$ O(1)$ rockourse保证全动态setCover。我们的工作同时简化并统一了以前的结果,并概括了更大的涵盖问题类别。我们的关键技术是受Tsallis熵启发的新潜在功能。我们还广泛地使用了相互覆盖范围的概念,这概括了相互信息的经典概念。

In submodular covering problems, we are given a monotone, nonnegative submodular function $f: 2^N \rightarrow\mathbb{R}_+$ and wish to find the min-cost set $S\subseteq N$ such that $f(S)=f(N)$. This captures SetCover when $f$ is a coverage function. We introduce a general framework for solving such problems in a fully-dynamic setting where the function $f$ changes over time, and only a bounded number of updates to the solution (recourse) is allowed. For concreteness, suppose a nonnegative monotone submodular function $g_t$ is added or removed from an active set $G^{(t)}$ at each time $t$. If $f^{(t)}=\sum_{g\in G^{(t)}} g$ is the sum of all active functions, we wish to maintain a competitive solution to SubmodularCover for $f^{(t)}$ as this active set changes, and with low recourse. We give an algorithm that maintains an $O(\log(f_{max}/f_{min}))$-competitive solution, where $f_{max}, f_{min}$ are the largest/smallest marginals of $f^{(t)}$. The algorithm guarantees a total recourse of $O(\log(c_{max}/ c_{min})\cdot\sum_{t\leq T}g_t(N))$, where $c_{max},c_{min}$ are the largest/smallest costs of elements in $N$. This competitive ratio is best possible even in the offline setting, and the recourse bound is optimal up to the logarithmic factor. For monotone submodular functions that also have positive mixed third derivatives, we show an optimal recourse bound of $O(\sum_{t\leq T}g_t(N))$. This structured class includes set-coverage functions, so our algorithm matches the known $O(\log n)$-competitiveness and $O(1)$ recourse guarantees for fully-dynamic SetCover. Our work simultaneously simplifies and unifies previous results, as well as generalizes to a significantly larger class of covering problems. Our key technique is a new potential function inspired by Tsallis entropy. We also extensively use the idea of Mutual Coverage, which generalizes the classic notion of mutual information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源