论文标题
$^{42-51} $ ca在$^{12} $ c目标上以$ 280 $ mev/nucleon的散射为基于手性$ g $折叠模式的$^{12} $ c目标的ranalyses,gogny-d1s hartree-fock-bogoliubov密度(在物理学的结果中发表)
Reanalyses for $^{42-51}$Ca scattering on a $^{12}$C target at $280$ MeV/nucleon based on chiral $g$ folding mode with Gogny-D1S Hartree-Fock-Bogoliubov densities (published in Results in Physics)
论文作者
论文摘要
在上一篇论文中,我们预测了反应横切部分$σ_ {\ rm r} $ for $^{40-60-60,62,64} $ ca+$+$^{12} $ c散射以$ 280 $ 〜mev/unocleon $ 280 $ 〜mev/unocleon,因为tanaka {\ it e el al al al al al al al al al and e al。} $^{42-51} $ ca in Riken和确定的中子皮肤$ r _ {\ rm skin}({\ rm riken})$使用woos-saxon密度的Glauber模型的光学限制。我们的目的是从$σ_{\ rm i} $重新分析$ r _ {\ rm skin} $。我们的分析优于它们,因为手性$ G $ -MATRIX折叠模型(GHFB和GHFB+AMP密度)要比Glauber模型的光学极限(Woos-Saxon密度)好得多。我们的模型是手性$ g $ -matrix折叠模型,其密度从GHFB和GHFB+AMP密度缩放。我们扩展GHFB和GHFB+AMP密度,以便缩放密度的$σ_ {\ rm r} $可以同意$σ_{\ rm I} $的中心值,条件是,在比例质子密度的质子半径上等于基于电子元素的质子密度的质子半径等于基于电子元素散布的数据。因此,确定的$ r _ {\ rm skin} $接近其结果$ r _ {\ rm skin}^{42-51}({\ rm riken})$。对于$^{48} $ ca,我们的值$ r _ {\ rm skin}^{48} $为0.105 $ \ pm $ 0.06〜fm,而其值为$ r _ {\ rm m}^{48} {48}({\ rm riken})我们采取加权平均值及其误差为$ r _ {\ rm skin}^{48}(σ_{\ rm i})= 0.105 \ pm 0.06 $ 〜fm和$ r _ {\ rm {\ rm}极化实验(E1 {\ rm pe})。我们的最终结果是$ r _ {\ rm skin}^{48} = 0.157 \ pm 0.027 $ 〜fm。我们的结论是$ r _ {\ rm skin}^{48} = 0.157 \ pm 0.027 $ 〜fm for $^{48} $ ca。对于$^{42-47,49-51} $ ca,我们在$ r _ {\ rm skin} $上的结果与他们的结果相似。我们的$^{48} $ CA的结果与CREX有关。
In the previous paper, we predicted reaction cross sections $σ_{\rm R}$ for $^{40-60,62,64}$Ca+$^{12}$C scattering at $280$~MeV/nucleon, since Tanaka {\it el al.} measured interaction cross sections $σ_{\rm I}$ for $^{42-51}$Ca in RIKEN and determined neutron skin $r_{\rm skin}({\rm RIKEN})$ using the optical limit of the Glauber model with the Woos-Saxon densities. Our purpose is to reanalyze the $r_{\rm skin}$ from the $σ_{\rm I}$. Our analysis is superior to theirs, since the chiral $g$-matrix folding model (the GHFB and GHFB+AMP densities) is much better than the optical limit of the Glauber model (the Woos-Saxon densities). Our model is the chiral $g$-matrix folding model with the densities scaled from the GHFB and GHFB+AMP densities. We scale the GHFB and GHFB+AMP densities so that the $σ_{\rm R}$ of the scaled densities can agree with the central values of $σ_{\rm I}$ under the condition that the proton radius of the scaled proton density equals the data determined from the isotope shift based on the electron scattering. The $r_{\rm skin}$ thus determined are close to their results $r_{\rm skin}^{42-51}({\rm RIKEN})$. For $^{48}$Ca, our value $r_{\rm skin}^{48}$ is 0.105 $\pm$ 0.06~fm, while their value is $r_{\rm m}^{48}({\rm RIKEN})=0.146 \pm 0.06$~fm. We take the weighted mean and its error of $r_{\rm skin}^{48}(σ_{\rm I})= 0.105 \pm 0.06$~fm and $r_{\rm skin}^{48}(E1{\rm pE}) =0.17 \pm 0.03$~fm of the high-resolution $E1$ polarizability experiment (E1{\rm pE}). Our final result is $r_{\rm skin}^{48}=0.157 \pm 0.027$~fm. Our conclusion is $r_{\rm skin}^{48}=0.157 \pm 0.027$~fm for $^{48}$Ca. For $^{42-47,49-51}$Ca, our results on $r_{\rm skin}$ are similar to theirs. Our result for $^{48}$Ca is related to CREX.