论文标题

COVID-19大流行的最佳控制:葡萄牙控制的卫生式卫生。

Optimal control of the COVID-19 pandemic: controlled sanitary deconfinement in Portugal

论文作者

Silva, Cristiana J., Cruz, Carla, Torres, Delfim F. M., Munuzuri, Alberto P., Carballosa, Alejandro, Area, Ivan, Nieto, Juan J., Fonseca-Pinto, Rui, da Fonseca, Rui Passadouro, Santos, Estevao Soares dos, Abreu, Wilson, Mira, Jorge

论文摘要

共同199的大流行迫使政策制定者裁定紧急限制,以阻止快速而大规模的传染。但是,在那个阶段之后,社会被迫在降低传染率的需求与重新开放经济的需求之间找到平衡。迄今为止,这种经验提供了有关大流行演变的数据,特别是由于制定的公共卫生措施而导致的人口动态。这使得预测数学模型的表述可以预测政治决策的后果。在这里,我们提出了一个模型,并将其应用于葡萄牙的情况。通过通过普通微分方程系统描述的数学确定性模型,我们符合该国Covid-19的实际演变。通过分析社交媒体识别人口准备遵循社会限制的人,我们将这种效果纳入了模型的版本,使我们能够检查不同的情况。通过考虑通过复杂网络耦合的先前模型的蒙特卡洛离散版本来实现这一点。然后,我们采用最佳控制理论来最大化返回“正常生活”的人数,并最大程度地减少经济成本最小的活跃感染者的数量,同时保证住院水平较低。这项工作允许测试大流行管理的各种情况(封闭经济部门,部分/总遵守公民的保护措施,重症监护病房中的床位数量等),以确保卫生系统的响应能力,因此是公共卫生决策支持工具。

The COVID-19 pandemic has forced policy makers to decree urgent confinements to stop a rapid and massive contagion. However, after that stage, societies are being forced to find an equilibrium between the need to reduce contagion rates and the need to reopen their economies. The experience hitherto lived has provided data on the evolution of the pandemic, in particular the population dynamics as a result of the public health measures enacted. This allows the formulation of forecasting mathematical models to anticipate the consequences of political decisions. Here we propose a model to do so and apply it to the case of Portugal. With a mathematical deterministic model, described by a system of ordinary differential equations, we fit the real evolution of COVID-19 in this country. After identification of the population readiness to follow social restrictions, by analyzing the social media, we incorporate this effect in a version of the model that allow us to check different scenarios. This is realized by considering a Monte Carlo discrete version of the previous model coupled via a complex network. Then, we apply optimal control theory to maximize the number of people returning to "normal life" and minimizing the number of active infected individuals with minimal economical costs while warranting a low level of hospitalizations. This work allows testing various scenarios of pandemic management (closure of sectors of the economy, partial/total compliance with protection measures by citizens, number of beds in intensive care units, etc.), ensuring the responsiveness of the health system, thus being a public health decision support tool.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源