论文标题
无潜力的域墙
Domain walls without a potential
论文作者
论文摘要
我们表明,可以在标量无潜力的简单标量理论中构建域壁或扭结。这些理论属于一类k词,当人们允许标量的衍生物消失时,拉格朗日人消失了。我们构造的域壁具有正能量和稳定的二次扰动。作为特定情况,我们发现具有域墙的理论家族及其二次扰动与规范的墨西哥帽子或正弦戈登标量理论相同。我们表明,规范和非规范案例仍然可以通过高阶扰动或仔细检查能量来区分。特别是,与通常的情况相反,我们的墙是具有一些固定拓扑费的现场配置中能量的局部最小值,但没有全球最小值。
We show that domain walls, or kinks, can be constructed in simple scalar theories where the scalar has no potential. These theories belong to a class of k-essence where the Lagrangian vanishes identically when one lets the derivatives of the scalar vanish. The domain walls we construct have positive energy and stable quadratic perturbations. As particular cases, we find families of theories with domain walls and their quadratic perturbations identical to the ones of the canonical Mexican hat or sine-Gordon scalar theories. We show that canonical and non canonical cases are nevertheless distinguishable via higher order perturbations or a careful examination of the energies. In particular, in contrast to the usual case, our walls are local minima of the energy among the field configuration having some fixed topological charge, but not global minima.