论文标题
在某些有限上导致真正的典型典型共同学
On some finiteness results in real étale cohomology
论文作者
论文摘要
我们表明,对于有限维度的准紧凑型准分离方案,实际典型的同居中的可构造条件与自然源自拓扑产生的可结构性概念一致。作为应用,我们证明,派生的直接图像函子在某些假设下保留了构造性,并计算合理方案的可构造有理稳定动机同托类别的Grothendieck组。我们证明了可构造的真实典型滑轮的通用基本变更属性,并推导出相同的理性动机光谱和$ b $ sheaves的属性。
We show that for quasi-compact quasi-separated schemes of finite dimension, the constructibility condition in real étale cohomology agrees with a notion of constructibility arising naturally from topology. As application we prove that the derived direct image functor preserves constructibility under some assumptions, and compute the Grothendieck group of the constructible rational stable motivic homotopy category for reasonable schemes. We prove the generic base change property for constructible real étale sheaves, and deduce the same property for rational motivic spectra and $b$-sheaves.