论文标题

稀疏统治的公制方法

A metric approach to sparse domination

论文作者

Alonso, José M. Conde, Di Plinio, Francesco, Parissis, Ioannis, Vempati, Manasa N.

论文摘要

我们提出了一种基于单尺度$ l^p $提示作为关键属性的稀疏支配的通用方法。结果是在均匀类型的度量空间的设置中提出的,并避免完全使用二元 - 良好技术以及Christ-Hytönen-Kairema Cubes。在我们的一般原则的应用中,我们恢复了二连续的calderón-zygmund内核在同质类型的空间上稀疏的统治,我们证明了一个稀疏界限的家庭,用于与表现出傅立叶衰变相关的最大函数相关的最大功能,我们推出了稀疏的radon transpares in polynomial submanifolds $ n $ nifd n $ under sup manifolds $ n n $^n n f. n。

We present a general approach to sparse domination based on single-scale $L^p$-improving as a key property. The results are formulated in the setting of metric spaces of homogeneous type and avoid completely the use of dyadic-probabilistic techniques as well as of Christ-Hytönen-Kairema cubes. Among the applications of our general principle, we recover sparse domination of Dini-continuous Calderón-Zygmund kernels on spaces of homogeneous type, we prove a family of sparse bounds for maximal functions associated to convolutions with measures exhibiting Fourier decay, and we deduce sparse estimates for Radon transforms along polynomial submanifolds of $\mathbb R^n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源